Penjelasan dengan langkah-langkah:
Transformasi geometri
P(-5,6) → y = -x → P'(-6,5)
P'(-6,5) → 180° dengan pusat (2,-3) maka
P''[tex]\binom{x''}{y''}[/tex]=[tex]\begin{bmatrix}-1&0\\0&-1\end{bmatrix}~\begin{bmatrix}-6-2\\5+3\end{bmatrix}+\begin{bmatrix}2\\-3\end{bmatrix}[/tex]
P''[tex]\binom{x''}{y''}[/tex] = [tex]\begin{bmatrix}-1&0\\0&-1\end{bmatrix}\begin{bmatrix}-8\\8\end{bmatrix}+\begin{bmatrix}2\\-3\end{bmatrix}[/tex]
P''[tex]\binom{x''}{y''}[/tex] = [tex]\begin{bmatrix}8\\-8\end{bmatrix}+\begin{bmatrix}2\\-3\end{bmatrix}[/tex]
P''[tex]\binom{x''}{y''}[/tex] = [tex]\begin{bmatrix}10\\-11\end{bmatrix}[/tex]
Maka hasil akhir transformasi titik P adalah P''(10,-11)
Detail Gambar
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
Transformasi geometri
P(-5,6) → y = -x → P'(-6,5)
P'(-6,5) → 180° dengan pusat (2,-3) maka
P''[tex]\binom{x''}{y''}[/tex]=[tex]\begin{bmatrix}-1&0\\0&-1\end{bmatrix}~\begin{bmatrix}-6-2\\5+3\end{bmatrix}+\begin{bmatrix}2\\-3\end{bmatrix}[/tex]
P''[tex]\binom{x''}{y''}[/tex] = [tex]\begin{bmatrix}-1&0\\0&-1\end{bmatrix}\begin{bmatrix}-8\\8\end{bmatrix}+\begin{bmatrix}2\\-3\end{bmatrix}[/tex]
P''[tex]\binom{x''}{y''}[/tex] = [tex]\begin{bmatrix}8\\-8\end{bmatrix}+\begin{bmatrix}2\\-3\end{bmatrix}[/tex]
P''[tex]\binom{x''}{y''}[/tex] = [tex]\begin{bmatrix}10\\-11\end{bmatrix}[/tex]
Maka hasil akhir transformasi titik P adalah P''(10,-11)
Detail Gambar