Jawab:
limit trigonometri
lim(x->0) cos x = 1
lim(x ->0) (sin ax)/ bx = a/b
lim(x->0) (tan ax)/bx = a/b
Penjelasan dengan langkah-langkah:
2b.
lim(x->0) { cos 3x } / (2x)
= lim(x->0) cos 3x ( 1/2x)
x= 0 --> limit = cos (0) { 1 / (2.0)}
x= 0 --> limit = 1 ( 1/0) = 1/0 = ∞
2c.
limit (x->0) (tan 5x) /(3x) =
= lim (x ->0) (tan 5x ) / (3x) { 5x/5x}
=lim (x-> 0) {tan 5x)/(5x) . (5x)/(3x)
x= 0 --> limit = 1 (5/3) = 5/3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Lim (cos 3x / 2x)
x->0
Lim (4cos³x - 3 cos x) / 2x
x->0
Lim [cos x (4cos² x - 3) / 2x]
x->0
Lim (1/2) . ( cos x / x) . (4 cos² x - 3)
x->0
= (1/2) . 1 . [ 4(1) - 3]
= 1/2
***
Lim ( tan 5x / 3x )
x->0
= 5/3
Catatan :
"Untuk Sin dan tan , bisa langsung dioperasikan"
Jawab:
limit trigonometri
lim(x->0) cos x = 1
lim(x ->0) (sin ax)/ bx = a/b
lim(x->0) (tan ax)/bx = a/b
Penjelasan dengan langkah-langkah:
2b.
lim(x->0) { cos 3x } / (2x)
= lim(x->0) cos 3x ( 1/2x)
x= 0 --> limit = cos (0) { 1 / (2.0)}
x= 0 --> limit = 1 ( 1/0) = 1/0 = ∞
2c.
limit (x->0) (tan 5x) /(3x) =
= lim (x ->0) (tan 5x ) / (3x) { 5x/5x}
=lim (x-> 0) {tan 5x)/(5x) . (5x)/(3x)
x= 0 --> limit = 1 (5/3) = 5/3