Penjelasan dengan langkah-langkah:
IntegrAl
1) ʃ (3x²-1)⁴ . 6x dx
.... misal 3x²-1 = u
= 6 ʃ ⅙u⁴ du
= 6 ⅙.⅕u⁵
=⅕u⁵
= ⅕(3x²-1)⁵
= ⅕(3x²-1)⁵ + C
2) ʃ sin√x. 1/(2√x) dx
...... (dx = 1/u' → u = √x → u' = 1/(1/(2√x) )
= ʃ sin√x . 1/(2√x) . 1/(1/(2√x)
= ʃ sin√x . 1/(2√x) . 2√x
= ʃ sin√x dx
= -cos √x
3) ʃ sin³x - cos x dx
= ʃ sin³x dx - ʃ cos x dx
= ʃ sin²x.sinx dx - ʃ cos x dx
........ misal cos x = u
= -ʃ 1 du + ʃ u² du - sin x
= - u + ⅓u³ - sin x
= - cos x + ⅓cos³x - sin x
4) ʃ (2x+1)⁷ dx
= ½ ʃ (2x+1)⁷ dx
= ½.⅛ (2x+1)⁸
= 1/16 (2x+1)⁸
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
IntegrAl
1) ʃ (3x²-1)⁴ . 6x dx
.... misal 3x²-1 = u
= 6 ʃ ⅙u⁴ du
= 6 ⅙.⅕u⁵
=⅕u⁵
= ⅕(3x²-1)⁵
= ⅕(3x²-1)⁵ + C
2) ʃ sin√x. 1/(2√x) dx
...... (dx = 1/u' → u = √x → u' = 1/(1/(2√x) )
= ʃ sin√x . 1/(2√x) . 1/(1/(2√x)
= ʃ sin√x . 1/(2√x) . 2√x
= ʃ sin√x dx
= -cos √x
3) ʃ sin³x - cos x dx
= ʃ sin³x dx - ʃ cos x dx
= ʃ sin²x.sinx dx - ʃ cos x dx
........ misal cos x = u
= -ʃ 1 du + ʃ u² du - sin x
= - u + ⅓u³ - sin x
= - cos x + ⅓cos³x - sin x
4) ʃ (2x+1)⁷ dx
= ½ ʃ (2x+1)⁷ dx
= ½.⅛ (2x+1)⁸
= 1/16 (2x+1)⁸