Berikut ini adalah akar-akar persamaan kuadrat yang didapatkan dengan metode memfaktorkan.
6. x₁ = -5, x₂ = 1
7. x₁ = -2, x₂ = 3
Berikut ini adalah akar-akar persamaan kuadrat yang didapatkan dengan metode rumus kuadratik (rumus ABC).
8. x₁ = -1/2, x₂ = -2
9. x₁ = 2, x₂ = -1
Penjelasan dengan langkah-langkah
Persamaan kuadrat adalah salah satu jenis persamaan suku banyak (polinomial). Persamaan kuadrat memiliki bentuk umum yaitu ax² + bx + c = 0 dengan a ≠ 0.
Akar-akar persamaan kuadrat merupakan bilangan-bilangan yang apabila dimasukkan ke dalam sebuah persamaan kuadrat maka persamaan kuadratnya menjadi benar. Akar-akar persamaan kuadrat dapat dicari dengan beberapa metode, dua di antaranya adalah memfaktorkan dan menggunakan rumus kuadratik (rumus ABC).
Rumus kuadratik adalah sebagai berikut:
Berikut ini adalah penjabaran pengerjaan soal.
Diketahui persamaan kuadrat yang diberikan:
(6.) x² + 4x - 5 = 0
(7.) 2x² - 2x - 12 = 0
(8.) 2x² + 5x + 2 = 0
(9.) 3x² - 3x - 6 = 0
Ditanya:
Akar-akar persamaan kuadratnya adalah?
Jawab:
(6)
x² + 4x - 5 = 0
x² + 5x - x - 5 = 0
(x + 5) (x - 1) = 0
x₁ = (x + 5) = 0
= -5
x₂ = (x - 1) = 0
= 1
(7)
2x² - 2x - 12 = 0
x² - x - 6 = 0
x² + 2x - 3x - 6 = 0
(x + 2) (x - 3) = 0
x₁ = (x + 2) = 0
= -2
x₂ = (x - 3) = 0
= 3
(8)
Misalkan:
a = 2
b = 5
c = 2
(9)
3x² - 3x - 6 = 0
x² - x - 2 = 0
Misalkan:
a = 1
b = -1
c = -2
Pelajari lebih lanjut
Metode melengkapkan kuadrat sempurna untuk mencari akar-akar sebuah persamaan kuadrat: brainly.co.id/tugas/4740385
Verified answer
Berikut ini adalah akar-akar persamaan kuadrat yang didapatkan dengan metode memfaktorkan.
Berikut ini adalah akar-akar persamaan kuadrat yang didapatkan dengan metode rumus kuadratik (rumus ABC).
Penjelasan dengan langkah-langkah
Persamaan kuadrat adalah salah satu jenis persamaan suku banyak (polinomial). Persamaan kuadrat memiliki bentuk umum yaitu ax² + bx + c = 0 dengan a ≠ 0.
Akar-akar persamaan kuadrat merupakan bilangan-bilangan yang apabila dimasukkan ke dalam sebuah persamaan kuadrat maka persamaan kuadratnya menjadi benar. Akar-akar persamaan kuadrat dapat dicari dengan beberapa metode, dua di antaranya adalah memfaktorkan dan menggunakan rumus kuadratik (rumus ABC).
Rumus kuadratik adalah sebagai berikut:
Berikut ini adalah penjabaran pengerjaan soal.
Diketahui persamaan kuadrat yang diberikan:
Ditanya:
Jawab:
(6)
x² + 4x - 5 = 0
x² + 5x - x - 5 = 0
(x + 5) (x - 1) = 0
x₁ = (x + 5) = 0
= -5
x₂ = (x - 1) = 0
= 1
(7)
2x² - 2x - 12 = 0
x² - x - 6 = 0
x² + 2x - 3x - 6 = 0
(x + 2) (x - 3) = 0
x₁ = (x + 2) = 0
= -2
x₂ = (x - 3) = 0
= 3
(8)
Misalkan:
(9)
3x² - 3x - 6 = 0
x² - x - 2 = 0
Misalkan:
Pelajari lebih lanjut
Metode melengkapkan kuadrat sempurna untuk mencari akar-akar sebuah persamaan kuadrat: brainly.co.id/tugas/4740385
#BelajarBersamaBrainly #SPJ1