Jawaban:
[tex] \frac{1}{27} [/tex]
Penjelasan dengan langkah-langkah:
[tex] \frac{ {2}^{n + 2} \times {6}^{n - 4} }{ {12}^{n - 1} } [/tex]
[tex] \frac{ {2}^{n + 2} \times {6}^{n - 4} }{ {(6 \times 2)}^{n - 1} } [/tex]
[tex] \frac{ {2}^{n + 2} \times {6}^{n - 4}}{ {6}^{n - 1} \times {2}^{n - 1} } [/tex]
[tex] \frac{ {2}^{(n + 2) - (n - 1)} }{ {6}^{(n - 1) - (n - 4)} } [/tex]
[tex] \frac{ {2}^{3} }{ {6}^{3} } [/tex]
[tex] \frac{ {2}^{3} }{ {(2 \times 3)}^{3} } [/tex]
[tex] \frac{ {2}^{3} }{ {2}^{3} \times {3}^{3} } [/tex]
[tex] \frac{1 }{ {3}^{3} } [/tex]
[tex] \textcolor{blue}{mawar2000}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
[tex] \frac{1}{27} [/tex]
Penjelasan dengan langkah-langkah:
[tex] \frac{ {2}^{n + 2} \times {6}^{n - 4} }{ {12}^{n - 1} } [/tex]
[tex] \frac{ {2}^{n + 2} \times {6}^{n - 4} }{ {(6 \times 2)}^{n - 1} } [/tex]
[tex] \frac{ {2}^{n + 2} \times {6}^{n - 4}}{ {6}^{n - 1} \times {2}^{n - 1} } [/tex]
[tex] \frac{ {2}^{(n + 2) - (n - 1)} }{ {6}^{(n - 1) - (n - 4)} } [/tex]
[tex] \frac{ {2}^{3} }{ {6}^{3} } [/tex]
[tex] \frac{ {2}^{3} }{ {(2 \times 3)}^{3} } [/tex]
[tex] \frac{ {2}^{3} }{ {2}^{3} \times {3}^{3} } [/tex]
[tex] \frac{1 }{ {3}^{3} } [/tex]
[tex] \frac{1}{27} [/tex]
[tex] \textcolor{blue}{mawar2000}[/tex]