x² - x - p = 0 ,akar nya m atau n a= 1 b = -1 c= -p
m+ n = -b/a = 1 m n = c/a = - p jumlah kuadrat misal K1= (m² + n²) = (m + n)² - 2(m n) K1 = (1)² - 2(-p) K1 = 1 +2p
x² - px - 1=0, akarnya s atau t a=1 b = -p c = - 1 s + t = -b/a= p s t = c/a = - 1 kuadrat jumlah kebalikn = K2 = (1/s+ 1/t)² = {(s +t)/( st) }² = (s+t)²/ (s t)² = (p)² /(-1)² = p² K2 = p²
Verified answer
Jawabx² - x - p = 0 ,akar nya m atau n
a= 1
b = -1
c= -p
m+ n = -b/a = 1
m n = c/a = - p
jumlah kuadrat misal K1= (m² + n²) = (m + n)² - 2(m n)
K1 = (1)² - 2(-p)
K1 = 1 +2p
x² - px - 1=0, akarnya s atau t
a=1
b = -p
c = - 1
s + t = -b/a= p
s t = c/a = - 1
kuadrat jumlah kebalikn = K2 = (1/s+ 1/t)²
= {(s +t)/( st) }² = (s+t)²/ (s t)²
= (p)² /(-1)²
= p²
K2 = p²
K1 = K2
1 + 2p = p²
p² - 2p = 1
(p -1)² = 1 + 1
p - 1 = √2
p = 1 + √2
p = 1 - √2
Verified answer
Kelas 10Matematika
Bab 3 - Sistem Persamaan Linear
step 1 : menentukan persamaannya
x² - x - p = 0
x₁ + x₂ = 1 → pers. 1
x₁ x₂ = -p → pers. 2
x² - px - 1 = 0
x₃ + x₄ = p → pers. 3
x₃ x₄ = -1 → pers. 4
step 2 : menentukan nilai p dengan substitusi
x₁² + x₂² = (1/x₃ + 1/x₄)²
(x₁ + x₂)² - 2x₁x₂ = ((x₃ + x₄) / (x₃x₄))²
1² - 2(-p) = (p / -1)²
1 + 2p = p²
p² - 2p - 1 = 0
p₁₂ = (-b +/- √(b² - 4ac)) / 2a
p₁₂ = (2 +/- √((-2)² - 4(1)(-1))) / 2(1)
p₁₂ = (2 +/- √(4 + 4)) / 2
p₁₂ = (2 +/- √8) / 2
p₁₂ = 1 +/- √2
p₁ = 1 + √2
p₂ = 1 - √2