Penjelasan dengan langkah-langkah:
FungSee
f(x) = 5 - 4x³
f(g(x) = 4x³ + 8x² + 24x - 55
Nilai g(-2) = .....
= f(g(x)
= 5 - 4(g(x)³
= -4(g(x)³ + 5
= (4x³ + 8x² + 24x -55 - 5) + 5
= (4x³- 8x² - 24x -60) + 5
= -4(-x³ -2x² -6x + 15) + 5
g(x)³ = (-x³-2x²-6x+15)
g(x) = ³√(-x³-2x²-6x+15)
g(-2) = ³√(-(-2)³-2(-2)²-6(-2)+15)
g(-2) = ³√(8-8+12+15)
g(-2) = ³√27)
g(-2) = 3
PEMBAHASAN
Invers Fungsi
f^-1 (5 - 4x³) = x
(fog)(x) = 4x³ + 8x² + 24x - 55
f^-1 (4x³ + 8x² + 24x - 55) = g(x)
g(-2) = f^-1 (4(-2)³ + 8(-2)² + 24(-2) - 55)
g(-2) = f^-1 (-103)
g(-2) = f^-1 (5 - 4x³) = x
g(-2) = f^-1 (5 - 108) = x
g(-2) = f^-1 (5 - 4.3³) = 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
FungSee
f(x) = 5 - 4x³
f(g(x) = 4x³ + 8x² + 24x - 55
Nilai g(-2) = .....
f(g(x) = 4x³ + 8x² + 24x - 55
= f(g(x)
= 5 - 4(g(x)³
= -4(g(x)³ + 5
= (4x³ + 8x² + 24x -55 - 5) + 5
= (4x³- 8x² - 24x -60) + 5
= -4(-x³ -2x² -6x + 15) + 5
g(x)³ = (-x³-2x²-6x+15)
g(x) = ³√(-x³-2x²-6x+15)
g(-2) = ³√(-(-2)³-2(-2)²-6(-2)+15)
g(-2) = ³√(8-8+12+15)
g(-2) = ³√27)
g(-2) = 3
Verified answer
PEMBAHASAN
Invers Fungsi
f(x) = 5 - 4x³
f^-1 (5 - 4x³) = x
(fog)(x) = 4x³ + 8x² + 24x - 55
f^-1 (4x³ + 8x² + 24x - 55) = g(x)
g(-2) = f^-1 (4(-2)³ + 8(-2)² + 24(-2) - 55)
g(-2) = f^-1 (-103)
g(-2) = f^-1 (5 - 4x³) = x
g(-2) = f^-1 (5 - 108) = x
g(-2) = f^-1 (5 - 4.3³) = 3
g(-2) = 3