Odpowiedź:
[tex]\huge\boxed {log_{8} 4\sqrt{128} =1\dfrac{5}{6} }[/tex]
Szczegółowe wyjaśnienie:
definicja logarytmu:
korzystamy ze wzorów:
obliczamy:
[tex]log_{8} 4\sqrt{128} =x~~\Leftrightarrow ~~8^{x} =4\sqrt{128} \\\\\\8^{x} =4\sqrt{128} \\\\(2^{3} )^{x} =2^{2} \cdot \sqrt{2\cdot 64} \\\\2^{3x} =2^{2} \cdot 8\cdot \sqrt{2} \\\\2^{3x}=2^{2} \cdot 2^3} \cdot 2^{\frac{1}{2} } \\\\2^{3x} =2^{2+3+\frac{1}{2} } \\\\2^{3x} =2^{5\frac{1}{2} }\\\\2^{3x} =2^{\frac{11}{2} }~~\Leftrightarrow ~~3x=\dfrac{11}{2} \\\\3x=\dfrac{11}{2} ~~\mid \div 3\\\\x=\dfrac{11}{2} \cdot \dfrac{1}{3} \\\\x=\dfrac{11}{6} \\\\\huge\boxed{x=1\dfrac{5}{6} }[/tex]
Odp: [tex]log_{8} 4\sqrt{128} =1\dfrac{5}{6}[/tex].
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\huge\boxed {log_{8} 4\sqrt{128} =1\dfrac{5}{6} }[/tex]
Szczegółowe wyjaśnienie:
definicja logarytmu:
korzystamy ze wzorów:
obliczamy:
[tex]log_{8} 4\sqrt{128} =x~~\Leftrightarrow ~~8^{x} =4\sqrt{128} \\\\\\8^{x} =4\sqrt{128} \\\\(2^{3} )^{x} =2^{2} \cdot \sqrt{2\cdot 64} \\\\2^{3x} =2^{2} \cdot 8\cdot \sqrt{2} \\\\2^{3x}=2^{2} \cdot 2^3} \cdot 2^{\frac{1}{2} } \\\\2^{3x} =2^{2+3+\frac{1}{2} } \\\\2^{3x} =2^{5\frac{1}{2} }\\\\2^{3x} =2^{\frac{11}{2} }~~\Leftrightarrow ~~3x=\dfrac{11}{2} \\\\3x=\dfrac{11}{2} ~~\mid \div 3\\\\x=\dfrac{11}{2} \cdot \dfrac{1}{3} \\\\x=\dfrac{11}{6} \\\\\huge\boxed{x=1\dfrac{5}{6} }[/tex]
Odp: [tex]log_{8} 4\sqrt{128} =1\dfrac{5}{6}[/tex].