Jawab:
[tex]\displaystyle -\arctan (\cos x)+C[/tex]
Penjelasan dengan langkah-langkah:
Ini hanya integral substitusi
[tex]\displaystyle \int \frac{\sin x}{1+\cos^2 x}~dx\\u=\cos x\\du=-\sin x~dx\\=\int \frac{\sin x}{1+u^2}~\frac{du}{-\sin x}\\=-\frac{du}{1+u^2}\\=-\arctan u+C\\=-\arctan (\cos x)+C[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Jawab:
[tex]\displaystyle -\arctan (\cos x)+C[/tex]
Penjelasan dengan langkah-langkah:
Ini hanya integral substitusi
[tex]\displaystyle \int \frac{\sin x}{1+\cos^2 x}~dx\\u=\cos x\\du=-\sin x~dx\\=\int \frac{\sin x}{1+u^2}~\frac{du}{-\sin x}\\=-\frac{du}{1+u^2}\\=-\arctan u+C\\=-\arctan (\cos x)+C[/tex]