Jawab:
Penjelasan dengan langkah-langkah:
misal y = f(x)/g(x)
y = √(x/2-x)
= x^1/2/(2-x)^1/2
f(x) = x^1/2
= √x
g(x) = (2-x)^1/2
= √2-x
f'(x) = 1/2x^-1/2
= 1/2(1/x)^1/2
= 1/2√x
= √x/2x
g'(x) = 1/2(2-x)^-1/2 ×1×(-x⁰)+0
= 1/2(1/(2-x)^1/2)×-1
= -1/2(2-x)^1/2
= -1/2√2-x
= -√2-x/2(2-x)
= -√(2-x)/4-2x
y' = (f'(x)×g(x)-f(x)×g'(x))/(g(x))²
= ((√x/2x)(√(2-x))-(-√x(√(2-x)/4-2x)))/(√2-x)²
= (√(x(2-x))/2x+√(x(2-x))/4-2x)/(2-x)
= (√(2x-x²)/2x+√(2x-x²)/4-2x)/(2-x)
= (√(2x-x²)(4-2x)+√(2x-x²)(2x))/(2x)(4-2x)(2-x)
= (4√(2x-x²)-2x√(2x-x²)+2x√(2x-x²))/(2x)(4-2x)(2-x)
= (4√(2x-x²))/(2x)(4-2x)(2-x)
= (4√(2x-x²))/(2x)(4-2x)(2-x)×√(2x-x²)/√(2x-x²)
= (2x-x²)(4)/4(x)(2-x)(2-x)√(2x-x²)
= (2x-x²)/(2x-x²)(2-x)√(2x-x²)
= 1/(2-x)√(2x-x²)
C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
Penjelasan dengan langkah-langkah:
misal y = f(x)/g(x)
y = √(x/2-x)
= x^1/2/(2-x)^1/2
f(x) = x^1/2
= √x
g(x) = (2-x)^1/2
= √2-x
f'(x) = 1/2x^-1/2
= 1/2(1/x)^1/2
= 1/2√x
= √x/2x
g'(x) = 1/2(2-x)^-1/2 ×1×(-x⁰)+0
= 1/2(1/(2-x)^1/2)×-1
= -1/2(2-x)^1/2
= -1/2√2-x
= -√2-x/2(2-x)
= -√(2-x)/4-2x
y' = (f'(x)×g(x)-f(x)×g'(x))/(g(x))²
= ((√x/2x)(√(2-x))-(-√x(√(2-x)/4-2x)))/(√2-x)²
= (√(x(2-x))/2x+√(x(2-x))/4-2x)/(2-x)
= (√(2x-x²)/2x+√(2x-x²)/4-2x)/(2-x)
= (√(2x-x²)(4-2x)+√(2x-x²)(2x))/(2x)(4-2x)(2-x)
= (4√(2x-x²)-2x√(2x-x²)+2x√(2x-x²))/(2x)(4-2x)(2-x)
= (4√(2x-x²))/(2x)(4-2x)(2-x)
= (4√(2x-x²))/(2x)(4-2x)(2-x)×√(2x-x²)/√(2x-x²)
= (2x-x²)(4)/4(x)(2-x)(2-x)√(2x-x²)
= (2x-x²)/(2x-x²)(2-x)√(2x-x²)
= 1/(2-x)√(2x-x²)
C