AB = c = 13 AC = b = 13 BC = a = 10 s = 1/2 (a + b + c) = 1/2 (10 + 13 + 13) = 1/2 (36) = 18 Luas ∆ = √(s (s - a) (s - b) (s - c)) = √(18 (18 - 13) (18 - 13) (18 - 10)) = √(18 . 5 . 5 . 8) = √3600 = 60
4) r = L/s = 60/18 = 10/3 => r = OP = OR = OQ = 10/3
1) AP = √(AC^2 - PC^2) = √(13^2 - 5^2) = √(169 - 25) = √144 = 12 AO = AP - OP = 12 - 10/3 = 26/3 AR = √(AO^2 - OR^2) = √((26/3)^2 - (10/3)^2) = √(676/9 - 100/9) = √(576/9) = 24/3 = 8
Atau AR = s - a = 18 - 10 = 8
2) sin 3) Tan 5) cos AB . AO = |AB| . |AO| cos Sudut ABC = sudut ABP = x Sudut antara AB dan BC = 180° - x cos x = BP/AB = 5/13 AB . BC = |AB| |BC| cos (180° - x) = 13 . 10 . - cos x = 130 . -5/13 = -50
Verified answer
AB = c = 13AC = b = 13
BC = a = 10
s = 1/2 (a + b + c) = 1/2 (10 + 13 + 13) = 1/2 (36) = 18
Luas ∆ = √(s (s - a) (s - b) (s - c))
= √(18 (18 - 13) (18 - 13) (18 - 10))
= √(18 . 5 . 5 . 8)
= √3600
= 60
4) r = L/s = 60/18 = 10/3 => r = OP = OR = OQ = 10/3
1) AP = √(AC^2 - PC^2) = √(13^2 - 5^2) = √(169 - 25) = √144 = 12
AO = AP - OP = 12 - 10/3 = 26/3
AR = √(AO^2 - OR^2)
= √((26/3)^2 - (10/3)^2)
= √(676/9 - 100/9)
= √(576/9)
= 24/3
= 8
Atau AR = s - a = 18 - 10 = 8
2) sin
3) Tan
5) cos AB . AO = |AB| . |AO| cos
Sudut ABC = sudut ABP = x
Sudut antara AB dan BC = 180° - x
cos x = BP/AB = 5/13
AB . BC = |AB| |BC| cos (180° - x)
= 13 . 10 . - cos x
= 130 . -5/13
= -50
Verified answer