Penjelasan dengan langkah-langkah:
Eksponen, rasional
[tex] \rm ( \frac{m}{n} ) {}^{x} = \frac{ {m}^{x} }{n {}^{x} } \\ \rm ( {m}^{x} ) {}^{y} = {m}^{xy} \\ \rm \frac{m}{ \sqrt{n} } = \frac{m}{ \sqrt{n} } \: . \: \frac{ \sqrt{n} }{ \sqrt{n} } = \frac{m}{n} \sqrt{n} [/tex]
berlaku:
bagian ( a )
[tex] \large{(} ( \frac{16}{8} ) {}^{ \frac{1}{4} } \large{)} {}^{3} = ( \frac{16}{81} ) {}^{ \frac{3}{4} } \\( ( \frac{2}{3} ) {}^{4} ) {}^{ \frac{3}{4} } = ( \frac{2}{3} ) {}^{3} = \frac{ {2}^{3} }{ {3}^{3} } \\ \frac{2 \times 2 \times 2}{3 \times 3 \times 3} = \frac{8}{27} [/tex]
bagian ( b )
[tex] \frac{7 \sqrt{3} }{2 + \sqrt{3} } = \frac{7 \sqrt{3} }{2 + \sqrt{3} } \: . \: \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \frac{7 \sqrt{3} (2 - \sqrt{3} )}{ {2}^{2} - ( \sqrt{3} ) {}^{2} } = \frac{14 \sqrt{3} - 7 \sqrt{9} }{4 - 3} \\ \frac{14 \sqrt{3} - 7(3) }{1} = 14 \sqrt{3} - 21 = 7(2 \sqrt{3} - 3)[/tex]
bagian ( a ); Jadi, bentuk sederhana dari [tex] \rm \large{(} ( \frac{16}{8} ) {}^{ \frac{1}{4} } \large{)} {}^{3} \\ [/tex] adalah [tex] \rm \frac{8}{27} \\ [/tex] .
bagian ( b ); Jadi, bentuk sederhana dari [tex] \rm \frac{7 \sqrt{3} }{2 + \sqrt{3} } \\ [/tex] adalah [tex] \rm 7(2\sqrt{3} - 3) [/tex] .
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
Eksponen, rasional
[tex] \rm ( \frac{m}{n} ) {}^{x} = \frac{ {m}^{x} }{n {}^{x} } \\ \rm ( {m}^{x} ) {}^{y} = {m}^{xy} \\ \rm \frac{m}{ \sqrt{n} } = \frac{m}{ \sqrt{n} } \: . \: \frac{ \sqrt{n} }{ \sqrt{n} } = \frac{m}{n} \sqrt{n} [/tex]
berlaku:
bagian ( a )
[tex] \large{(} ( \frac{16}{8} ) {}^{ \frac{1}{4} } \large{)} {}^{3} = ( \frac{16}{81} ) {}^{ \frac{3}{4} } \\( ( \frac{2}{3} ) {}^{4} ) {}^{ \frac{3}{4} } = ( \frac{2}{3} ) {}^{3} = \frac{ {2}^{3} }{ {3}^{3} } \\ \frac{2 \times 2 \times 2}{3 \times 3 \times 3} = \frac{8}{27} [/tex]
bagian ( b )
[tex] \frac{7 \sqrt{3} }{2 + \sqrt{3} } = \frac{7 \sqrt{3} }{2 + \sqrt{3} } \: . \: \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \frac{7 \sqrt{3} (2 - \sqrt{3} )}{ {2}^{2} - ( \sqrt{3} ) {}^{2} } = \frac{14 \sqrt{3} - 7 \sqrt{9} }{4 - 3} \\ \frac{14 \sqrt{3} - 7(3) }{1} = 14 \sqrt{3} - 21 = 7(2 \sqrt{3} - 3)[/tex]
bagian ( a ); Jadi, bentuk sederhana dari [tex] \rm \large{(} ( \frac{16}{8} ) {}^{ \frac{1}{4} } \large{)} {}^{3} \\ [/tex] adalah [tex] \rm \frac{8}{27} \\ [/tex] .
bagian ( b ); Jadi, bentuk sederhana dari [tex] \rm \frac{7 \sqrt{3} }{2 + \sqrt{3} } \\ [/tex] adalah [tex] \rm 7(2\sqrt{3} - 3) [/tex] .