Persamaan Trigonometri
no. 1
tan 2x = tan 50°
2x = 50° + k.180°
x = 25° + k.90°
k bilangan bulat
k = 0 → x = 25°
k = 1 → x = 115°
dan seterusnya
Interval [0° , 360°]
HP = {25°, 115°, 205°, 295°}
no. 2
tan 4x = -√3
kuadran II
4x = 180° - 60° + k.180°
x = (120° + k.180°)/4
x = 30° + k.45°
k = 0 → x = 30°
k = 1 → x = 30° + 45° = 75°
k = 2 → x = 30° + 90° = 120°
HP = {30°, 75°, 120°, 165°, 210°, 255°, 300°, 345°}
•
no. 3
π = 180°
tan (3x - 60°) = cot 2x
tan (3x - 60°) = tan (90° - 2x)
3x - 60° = 90° - 2x + k.180°
3x + 2x = 90° + 60° + k.180°
5x = 150° + k.180°
x = 30° + k.36°
x = π/6 + π/5 k
k = 0 → x = π/6
k = 1 → x = 11π/30
Interval [0 , 2π]
HP = {π/6, 11π/30, 17π/30, 23π/30, 29π/30, 35π/30, 41π/30, 47π/30, 53π/30, 59π/30}
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Persamaan Trigonometri
no. 1
tan 2x = tan 50°
2x = 50° + k.180°
x = 25° + k.90°
k bilangan bulat
k = 0 → x = 25°
k = 1 → x = 115°
dan seterusnya
Interval [0° , 360°]
HP = {25°, 115°, 205°, 295°}
no. 2
tan 4x = -√3
kuadran II
4x = 180° - 60° + k.180°
x = (120° + k.180°)/4
x = 30° + k.45°
k bilangan bulat
k = 0 → x = 30°
k = 1 → x = 30° + 45° = 75°
k = 2 → x = 30° + 90° = 120°
dan seterusnya
Interval [0° , 360°]
HP = {30°, 75°, 120°, 165°, 210°, 255°, 300°, 345°}
•
no. 3
π = 180°
tan (3x - 60°) = cot 2x
tan (3x - 60°) = tan (90° - 2x)
3x - 60° = 90° - 2x + k.180°
3x + 2x = 90° + 60° + k.180°
5x = 150° + k.180°
x = 30° + k.36°
x = π/6 + π/5 k
k bilangan bulat
k = 0 → x = π/6
k = 1 → x = 11π/30
dan seterusnya
Interval [0 , 2π]
HP = {π/6, 11π/30, 17π/30, 23π/30, 29π/30, 35π/30, 41π/30, 47π/30, 53π/30, 59π/30}