Penjelasan dengan langkah-langkah:
StatisTik a
menentukan simpangan baku
rata rata data tersebut
[tex]\begin{aligned} \overline{x}&= \frac{\sum x_{i}}{n}\\&=\frac{6+7+8+8+5+6+9}{7}\\&=\frac{49}{7}\\&=7\end{aligned}[/tex]
Lanjut dengan
[tex]\begin{aligned}\sum(x_{i}-\overline{x})^2&=(6-7)^2+(7-7)^2+(8-7)^2\cdots\\&\cdots+(8-7)^2+(5-7)^2+(6-7)^2+(9-7)^2\\&=1+0+1+1+4+1+4\\&=12\end{aligned}[/tex]
Kemudian
[tex]\begin{aligned}S&=\sqrt{\frac{\sum(x_i -\overline{x})^2}{n}}\\&=\sqrt{\frac{12}{7}}\\&=\frac{2\sqrt{3}}{\sqrt{7}}\\&=\frac{2\sqrt{3}}{\sqrt{7}}\times \frac{\sqrt{7}}{\sqrt{7}}\\&=\boxed{\frac{2}{7}\sqrt{21}}\end{aligned}[/tex](B)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
StatisTik a
menentukan simpangan baku
rata rata data tersebut
[tex]\begin{aligned} \overline{x}&= \frac{\sum x_{i}}{n}\\&=\frac{6+7+8+8+5+6+9}{7}\\&=\frac{49}{7}\\&=7\end{aligned}[/tex]
Lanjut dengan
[tex]\begin{aligned}\sum(x_{i}-\overline{x})^2&=(6-7)^2+(7-7)^2+(8-7)^2\cdots\\&\cdots+(8-7)^2+(5-7)^2+(6-7)^2+(9-7)^2\\&=1+0+1+1+4+1+4\\&=12\end{aligned}[/tex]
Kemudian
[tex]\begin{aligned}S&=\sqrt{\frac{\sum(x_i -\overline{x})^2}{n}}\\&=\sqrt{\frac{12}{7}}\\&=\frac{2\sqrt{3}}{\sqrt{7}}\\&=\frac{2\sqrt{3}}{\sqrt{7}}\times \frac{\sqrt{7}}{\sqrt{7}}\\&=\boxed{\frac{2}{7}\sqrt{21}}\end{aligned}[/tex](B)