Trudno jest zmienić objętość ciał stałych i cieczy. A jednak w pewnych warunkach jest to możliwe. Ze zjawiskiem rozszerzalności cieplnej ciał spotykamy się często, np. gdy trzeba otworzyć słoik z mocno zakręconą metalową pokrywką.
Rozszerzalność cieplna ciał stałych:
Ciała stałe zbudowane są z cząsteczek. Po podgrzaniu ciało zajmuje większą objętość, a więc odległości między cząsteczkami musiały się zwiększyć. Cząsteczki ciał stałych znajdują się w bliskiej odległości, a ich ruch jest ograniczony do drgań. Im wyższa jest temperatura, tym większe są drgania cząsteczek, a odległości miedzy nimi powiększają się, ale nie na tyle, aby uległa zniszczeniu struktura ciała stałego. To „rozpychanie się” cząsteczek daje widoczny efekt zwiększenia objętości ciała. Rozszerzalność linowa ciał stałych polega na wydłużeniu się ciał stałych podczas ogrzewania (wzrostu ich temperatur) i kurczeniu się przy studzeniu (obniżeniu temperatury). Próba włożenia rozgrzanej kulki do pierścienie Gravesanda przekonuje, że nie mieści się ona w jego otworze (tak jak wcześniej zanim ją rozgrzano). Oznacza to, że gorąca kulka jest powiększona we wszystkich kierunkach, tzw. Ma zwiększoną objętość. Zaszło zjawisko rozszerzalności objętościowej, tzn. zwiększenia objętości pod wpływem ogrzania.
Zjawisko rozszerzalności temperaturowej ciał stałych ma olbrzymie znaczenie praktyczne. W naszym klimacie zmiany temperatury w ciągu roku mogą przekraczać 50C. Rozszerzalność temperaturowa musi więc być uwzględniona w praktyce, np. przy budowie konstrukcji architektonicznych, przewodowych linii niepowietrznych. Stalowe przęsła mostu mogą być latem nawet o pół metra dłuższe niż zimą. Wymaga to odpowiednich rozwiązań technicznych- stosuje się zazębiające się stalowe „grzebienie”, za których pomocą łączy się poszczególne części nawierzchni mostu. Nie przyczepia się też mostu sztywno do podłoża, lecz pod jednym z końców przęsła umieszcza się stalowe walce, po których ten koniec może się toczyć. Taki ruch umożliwiają opisane poniżej i pokazane na zdjęciach przerwy dylatacyjne.
Budując drogę z betonową nawierzchnią, zostawia się szczeliny, aby beton miał miejsce na rozszerzenie się w upalne dni. Szyny kolejowe i tramwajowe łączy się ze sobą zostawiając pomiędzy kolejnymi odcinkami tzw. Przerwy dylatacyjne. Podczas jazdy pociągiem słychać charakterystyczne stukanie kół w miejscach przerw w szynach. Obecnie, aby unikać „stukania”, stosuje się często ukośne nacięcia na szynach.
Rozszerzalność temperaturowa ciał:
Trudno jest zmienić objętość ciał stałych i cieczy. A jednak w pewnych warunkach jest to możliwe. Ze zjawiskiem rozszerzalności cieplnej ciał spotykamy się często, np. gdy trzeba otworzyć słoik z mocno zakręconą metalową pokrywką.
Rozszerzalność cieplna ciał stałych:
Ciała stałe zbudowane są z cząsteczek. Po podgrzaniu ciało zajmuje większą objętość, a więc odległości między cząsteczkami musiały się zwiększyć. Cząsteczki ciał stałych znajdują się w bliskiej odległości, a ich ruch jest ograniczony do drgań. Im wyższa jest temperatura, tym większe są drgania cząsteczek, a odległości miedzy nimi powiększają się, ale nie na tyle, aby uległa zniszczeniu struktura ciała stałego. To „rozpychanie się” cząsteczek daje widoczny efekt zwiększenia objętości ciała.
Rozszerzalność linowa ciał stałych polega na wydłużeniu się ciał stałych podczas ogrzewania (wzrostu ich temperatur) i kurczeniu się przy studzeniu (obniżeniu temperatury).
Próba włożenia rozgrzanej kulki do pierścienie Gravesanda przekonuje, że nie mieści się ona w jego otworze (tak jak wcześniej zanim ją rozgrzano). Oznacza to, że gorąca kulka jest powiększona we wszystkich kierunkach, tzw. Ma zwiększoną objętość. Zaszło zjawisko rozszerzalności objętościowej, tzn. zwiększenia objętości pod wpływem ogrzania.
Zastosowania zjawiska rozszerzalności temperaturowej ciał stałych:
Zjawisko rozszerzalności temperaturowej ciał stałych ma olbrzymie znaczenie praktyczne. W naszym klimacie zmiany temperatury w ciągu roku mogą przekraczać 50C. Rozszerzalność temperaturowa musi więc być uwzględniona w praktyce, np. przy budowie konstrukcji architektonicznych, przewodowych linii niepowietrznych. Stalowe przęsła mostu mogą być latem nawet o pół metra dłuższe niż zimą. Wymaga to odpowiednich rozwiązań technicznych- stosuje się zazębiające się stalowe „grzebienie”, za których pomocą łączy się poszczególne części nawierzchni mostu. Nie przyczepia się też mostu sztywno do podłoża, lecz pod jednym z końców przęsła umieszcza się stalowe walce, po których ten koniec może się toczyć. Taki ruch umożliwiają opisane poniżej i pokazane na zdjęciach przerwy dylatacyjne.
Budując drogę z betonową nawierzchnią, zostawia się szczeliny,
aby beton miał miejsce na rozszerzenie się w upalne dni. Szyny kolejowe i tramwajowe łączy się ze sobą zostawiając pomiędzy kolejnymi odcinkami tzw. Przerwy dylatacyjne. Podczas jazdy pociągiem słychać charakterystyczne stukanie kół w miejscach
przerw w szynach. Obecnie, aby unikać „stukania”, stosuje się często ukośne nacięcia na szynach.