Odpowiedź:
2*( sin³α + cos²α *sinα ) = 1
2*( sin³α + ( 1 - sin²α)*sin α ) = 1
2*( sin³α + sin α - sin³α ) = 1
2 sin α = 1 / : 2
sin α = 0,5
α = 30°
============
Szczegółowe wyjaśnienie:
sin²α + cos²α = 1 ⇒ cos²α = 1 - sin²α
[tex]\huge\boxed{\alpha = 30^{o}}[/tex]
[tex]2(sin^3\alpha + cos^{2}\alpha\cdot sin \ \alpha) = 1\\\\2\cdot sin \ \alpha(sin^{2}\alpha + cos^{2}\alpha) = 1[/tex]
sin²α + cos²α = 1
[tex]2sin \ \alpha \cdot 1 = 1\\\\2sin \ \alpha = 1 \ \ \ /:2\\\\sin \ \alpha = \frac{1}{2}\\\\\boxed{\alpha = 30^{o}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
2*( sin³α + cos²α *sinα ) = 1
2*( sin³α + ( 1 - sin²α)*sin α ) = 1
2*( sin³α + sin α - sin³α ) = 1
2 sin α = 1 / : 2
sin α = 0,5
α = 30°
============
Szczegółowe wyjaśnienie:
sin²α + cos²α = 1 ⇒ cos²α = 1 - sin²α
Verified answer
[tex]\huge\boxed{\alpha = 30^{o}}[/tex]
[tex]2(sin^3\alpha + cos^{2}\alpha\cdot sin \ \alpha) = 1\\\\2\cdot sin \ \alpha(sin^{2}\alpha + cos^{2}\alpha) = 1[/tex]
sin²α + cos²α = 1
[tex]2sin \ \alpha \cdot 1 = 1\\\\2sin \ \alpha = 1 \ \ \ /:2\\\\sin \ \alpha = \frac{1}{2}\\\\\boxed{\alpha = 30^{o}}[/tex]