Odpowiedź:
Wyjaśnienie:
Fd=mv2r;Fd=mrω2.
[tex]\huge\boxed{F = \frac{4\pi ^{2}mr}{T^{2}}}[/tex]
[tex]F = \frac{mv^{2}}{r}\\\\ale\\\\v = \frac{2\pi r}{T}, \ zatem\\\\F = \frac{m(\frac{2\pi r}{T})^{2}}{r}, \ czyli:\\\\\boxed{F = \frac{4\pi ^{2}mr}{T^{2}}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
Wyjaśnienie:
Fd=mv2r;Fd=mrω2.
Odpowiedź:
[tex]\huge\boxed{F = \frac{4\pi ^{2}mr}{T^{2}}}[/tex]
Wyjaśnienie:
[tex]F = \frac{mv^{2}}{r}\\\\ale\\\\v = \frac{2\pi r}{T}, \ zatem\\\\F = \frac{m(\frac{2\pi r}{T})^{2}}{r}, \ czyli:\\\\\boxed{F = \frac{4\pi ^{2}mr}{T^{2}}}[/tex]