" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
y=2-x -
=2+x-x^2
D=b^2-4ac
=1^2-4.1.2
=-9
L=D√D
6A
=-9.-3
6.1
= 27
6
=4,5
y = 4 - x² dan y = -x + 2
maka berlaku :
-x + 2 = 4 - x²
x² - x + 2 - 4 = 0
x² - x - 2 = 0
(x - 2)(x + 1) = 0
pembuat nol :
x - 2 = 0 --------> x = 2
x + 1 = 0 -------> x = -1
jadi luas yg dibatasi oleh kdua kurva di atas adalah :
L = int [-1,2] (4 - x² - (-x + 2)) dx
= int [-1,2] (-x² + x + 2) dx
= [ -1/3 x³ + 1/2 x² + 2x] [-1, 2]
= (-1/3 (2)³ + 1/2 (2)² + 2(2)) - (-1/3 (-1)³ + 1/2 (-1)² + 2(-1))
= (-8/3 + 2 + 4) - (1/3 + 1/2 - 2)
= 10/3 - (-7/6)
= 20/6 + 7/6
= 27/6
= 9/2 satuan luas