Factorizar : 3x^3 + 2x^2 - 5x - 4
= ( x + 1 )^2 ( 3x - 4 ) / x + 1
Aplicar las leyes de los exponentes :
[tex]{a}^{b + c} = {a}^{b.c} [/tex]
( x + 1 ) ^2 = ( x + 1 ) ( x + 1 )
= ( x + 1 ) ( x + 1 ) ( 3x - 4 ) / x + 1
Eliminar los términos comunes : x + 1
= ( x + 1 ) ( 3x - 4 )
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Factorizar : 3x^3 + 2x^2 - 5x - 4
= ( x + 1 )^2 ( 3x - 4 ) / x + 1
Aplicar las leyes de los exponentes :
[tex]{a}^{b + c} = {a}^{b.c} [/tex]
( x + 1 ) ^2 = ( x + 1 ) ( x + 1 )
= ( x + 1 ) ( x + 1 ) ( 3x - 4 ) / x + 1
Eliminar los términos comunes : x + 1
= ( x + 1 ) ( 3x - 4 )