[tex]N = tgϕ + ctgϕ \\ N = \frac{6}{ \sqrt{ {10}^{2} - {6}^{2} } } + \frac{ \sqrt{ {10}^{2} - {6}^{2} } }{6} \\ N = \frac{6}{8} + \frac{8}{6} \\ N = \frac{25}{12} [/tex]
[tex]senϕ = \frac{ \sqrt{ {15}^{2} - {12}^{2} } }{15} = \frac{9 }{15} = \frac{3}{5} = 0.6[/tex]
[tex]tg \alpha + ctg \alpha \\ \frac{3}{4} + \frac{4}{3} \\ \frac{25}{12} [/tex]
[tex]E = sen \alpha + cos \alpha \\ E = \frac{1}{ \sqrt{ {1}^{2} + {3}^{2} } } + \frac{3}{ \sqrt{ {1}^{2} + {3}^{2} } } \\ E = \frac{1}{ \sqrt{10} } + \frac{3}{ \sqrt{10} } \\ E = \frac{4}{ \sqrt{10} } \\ E = \frac{4}{ \sqrt{10} } \times \frac{ \sqrt{10} }{ \sqrt{10} } \\ E = \frac{4 \sqrt{10} }{10} \\ E = \frac{2 \sqrt{10} }{5} [/tex]
[tex]sec {}^{2} \beta + csc {}^{2} \alpha \\ (\frac{ \sqrt{ {8}^{2} {}^{2} + {4}^{2} } }{4}) {}^{2} + (\frac{ \sqrt{ {4}^{2} + {4}^{2} } }{4}) {}^{2} \\ (\frac{4 \sqrt{5} }{4}) {}^{2} + (\frac{4 \sqrt{2} }{4} ) {}^{2} \\ ( \sqrt{5} ) {}^{2} + ( \sqrt{2} ) {}^{2} \\ 5 + 2 \\ 7[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
PROBLEMA 1
[tex]N = tgϕ + ctgϕ \\ N = \frac{6}{ \sqrt{ {10}^{2} - {6}^{2} } } + \frac{ \sqrt{ {10}^{2} - {6}^{2} } }{6} \\ N = \frac{6}{8} + \frac{8}{6} \\ N = \frac{25}{12} [/tex]
PROBLEMA 2
[tex]senϕ = \frac{ \sqrt{ {15}^{2} - {12}^{2} } }{15} = \frac{9 }{15} = \frac{3}{5} = 0.6[/tex]
PROBLEMA 3
[tex]tg \alpha + ctg \alpha \\ \frac{3}{4} + \frac{4}{3} \\ \frac{25}{12} [/tex]
PROBLEMA 4
[tex]E = sen \alpha + cos \alpha \\ E = \frac{1}{ \sqrt{ {1}^{2} + {3}^{2} } } + \frac{3}{ \sqrt{ {1}^{2} + {3}^{2} } } \\ E = \frac{1}{ \sqrt{10} } + \frac{3}{ \sqrt{10} } \\ E = \frac{4}{ \sqrt{10} } \\ E = \frac{4}{ \sqrt{10} } \times \frac{ \sqrt{10} }{ \sqrt{10} } \\ E = \frac{4 \sqrt{10} }{10} \\ E = \frac{2 \sqrt{10} }{5} [/tex]
PROBLEMA 5
[tex]sec {}^{2} \beta + csc {}^{2} \alpha \\ (\frac{ \sqrt{ {8}^{2} {}^{2} + {4}^{2} } }{4}) {}^{2} + (\frac{ \sqrt{ {4}^{2} + {4}^{2} } }{4}) {}^{2} \\ (\frac{4 \sqrt{5} }{4}) {}^{2} + (\frac{4 \sqrt{2} }{4} ) {}^{2} \\ ( \sqrt{5} ) {}^{2} + ( \sqrt{2} ) {}^{2} \\ 5 + 2 \\ 7[/tex]