Explicación paso a paso:
a)
[tex] \sqrt{400 \times 25} = \sqrt{ {20}^{2} \times {5}^{2} } [/tex]
[tex] = \sqrt{ {20}^{2} } \times \sqrt{ {5}^{2} } = 20 \times 5 = 100[/tex]
Raiz de un producto.
b)
[tex] \sqrt{ \sqrt[3]{64} } = \sqrt{ \sqrt[3]{ {4}^{3} } } [/tex]
[tex] = \sqrt{4} = 2[/tex]
Raíz de una Raíz
c)
[tex] \sqrt[3]{27} + \sqrt[3]{8} = \sqrt[3]{ {3}^{3} } + \sqrt[3]{ {2}^{3} } [/tex]
[tex] = 3 + 2 = 6[/tex]
Suma de dos Raices.
d)
[tex] \sqrt[4]{1296} \times \sqrt[4]{16} = \sqrt[4]{ {6}^{4} \times {2}^{4} }[/tex]
[tex] = 6 \times 2 = 12[/tex]
e)
[tex] \sqrt{144 + 36} = \sqrt{ {12}^{2} + {6}^{2} } [/tex]
Raiz de una Suma
f)
[tex] \sqrt[xxx]{64} = \frac{ \sqrt[xxx]{128} }{ \sqrt[xxx]{2} } [/tex]
Raíz de una cociente.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Explicación paso a paso:
a)
[tex] \sqrt{400 \times 25} = \sqrt{ {20}^{2} \times {5}^{2} } [/tex]
[tex] = \sqrt{ {20}^{2} } \times \sqrt{ {5}^{2} } = 20 \times 5 = 100[/tex]
Raiz de un producto.
b)
[tex] \sqrt{ \sqrt[3]{64} } = \sqrt{ \sqrt[3]{ {4}^{3} } } [/tex]
[tex] = \sqrt{4} = 2[/tex]
Raíz de una Raíz
c)
[tex] \sqrt[3]{27} + \sqrt[3]{8} = \sqrt[3]{ {3}^{3} } + \sqrt[3]{ {2}^{3} } [/tex]
[tex] = 3 + 2 = 6[/tex]
Suma de dos Raices.
d)
[tex] \sqrt[4]{1296} \times \sqrt[4]{16} = \sqrt[4]{ {6}^{4} \times {2}^{4} }[/tex]
[tex] = 6 \times 2 = 12[/tex]
Raiz de un producto.
e)
[tex] \sqrt{144 + 36} = \sqrt{ {12}^{2} + {6}^{2} } [/tex]
Raiz de una Suma
f)
[tex] \sqrt[xxx]{64} = \frac{ \sqrt[xxx]{128} }{ \sqrt[xxx]{2} } [/tex]
Raíz de una cociente.