Respuesta:
e) 6s
Explicación paso a paso:
[tex]v _{y} = - gt _{s} + v _{o} \sin( \alpha ) [/tex]
[tex]0 = - gt _{s} + v _{o} \sin( \alpha ) [/tex]
[tex]gt _{s} = v _{o} \sin( \alpha ) [/tex]
[tex]t _{s} = \frac{v _{o} \sin( \alpha ) }{g} [/tex]
[tex]t _{s} = \frac{60 \sqrt{2} \frac{m}{s} \sin(45)}{10 \frac{m}{ {s}^{2} } } [/tex]
[tex] = 6 \sqrt{2} \sin(45) [/tex]
[tex]t _{s} = 6s[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
e) 6s
Explicación paso a paso:
[tex]v _{y} = - gt _{s} + v _{o} \sin( \alpha ) [/tex]
[tex]0 = - gt _{s} + v _{o} \sin( \alpha ) [/tex]
[tex]gt _{s} = v _{o} \sin( \alpha ) [/tex]
[tex]t _{s} = \frac{v _{o} \sin( \alpha ) }{g} [/tex]
[tex]t _{s} = \frac{60 \sqrt{2} \frac{m}{s} \sin(45)}{10 \frac{m}{ {s}^{2} } } [/tex]
[tex] = 6 \sqrt{2} \sin(45) [/tex]
[tex]t _{s} = 6s[/tex]