Respuesta:
[tex]v_{0}=\frac{d}{t} -\frac{a.t}{2}\\[/tex]
Explicación paso a paso:
[tex]d=v_{0} .t+(\frac{a.t^{2} }{2} )[/tex]
Despejamos:
[tex]d=v_{0} .t+(\frac{a.t^{2} }{2} )\\\\d-(\frac{a.t^{2} }{2} )=v_{0} .t\\\\\frac{d-(\frac{a.t^{2} }{2} )}{t} =v_{0}[/tex]
Reduciendo:
[tex]v_{0}=\frac{d-(\frac{a.t^{2} }{2} )}{t} \\\\v_{0}=\frac{d}{t} -\frac{\frac{a.t^{2} }{2}}{t} \\\\v_{0}=\frac{d}{t} -\frac{a.t^{2} }{2t} \\\\v_{0}=\frac{d}{t} -\frac{a.t}{2}\\[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]v_{0}=\frac{d}{t} -\frac{a.t}{2}\\[/tex]
Explicación paso a paso:
[tex]d=v_{0} .t+(\frac{a.t^{2} }{2} )[/tex]
Despejamos:
[tex]d=v_{0} .t+(\frac{a.t^{2} }{2} )\\\\d-(\frac{a.t^{2} }{2} )=v_{0} .t\\\\\frac{d-(\frac{a.t^{2} }{2} )}{t} =v_{0}[/tex]
Reduciendo:
[tex]v_{0}=\frac{d-(\frac{a.t^{2} }{2} )}{t} \\\\v_{0}=\frac{d}{t} -\frac{\frac{a.t^{2} }{2}}{t} \\\\v_{0}=\frac{d}{t} -\frac{a.t^{2} }{2t} \\\\v_{0}=\frac{d}{t} -\frac{a.t}{2}\\[/tex]
"Hemos despejado la variable que nos pide el ejercicio"