Gráfico Directamente Proporcional
[tex] \frac{x}{9} = \frac{80}{20} = \frac{100}{y} \\ [/tex]
⇒Hallamos el valor de "x" :
[tex] \frac{x}{9} = \frac{80}{20} \\ x = \frac{80}{20} \times 9 \\ x = \frac{720}{20} \\ \boxed{x = 36}[/tex]
⇒Hallamos el valor de "y" :
[tex] \frac{80}{20} = \frac{100}{y} \\ 80 \times y = 100 \times 20 \\ 80 \times y = 2000 \\ y = \frac{2000}{80} \\ \boxed{y = 25}[/tex]
⇒Calculamos "x + y" :
[tex]→ \boxed{x + y = 36 + 25 = 61 }[/tex]
Gráfico Inversamente Proporcional
[tex]6 \times x = 18 \times 4 \\ 6 \times x = 72 \\ x = \frac{72}{6} \\ \boxed{x = 12}[/tex]
[tex] \frac{36}{a} = \frac{a}{16} = \frac{b}{8} \\ [/tex]
⇒Hallamos el valor de "a" :
[tex] \frac{36}{a} = \frac{a}{16} \\ 36 \times 16 = a \times a \\ 576 = {a}^{2} \\ \sqrt{576} = a \\ \boxed{ 24 = a}[/tex]
⇒Hallamos el valor de "b" :
[tex] \frac{a}{16} = \frac{b}{8} \\ \frac{24}{16} = \frac{b}{8} \\ 24 \times 8 = b \times 16 \\ 192 = b \times 16 \\ \frac{192}{16} = b \\ \boxed{12 = b}[/tex]
⇒Hallamos "a - b" :
[tex]→ \boxed{a - b = 24 - 12 = 12}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
☆ PROBLEMA 14
Gráfico Directamente Proporcional
[tex] \frac{x}{9} = \frac{80}{20} = \frac{100}{y} \\ [/tex]
⇒Hallamos el valor de "x" :
[tex] \frac{x}{9} = \frac{80}{20} \\ x = \frac{80}{20} \times 9 \\ x = \frac{720}{20} \\ \boxed{x = 36}[/tex]
⇒Hallamos el valor de "y" :
[tex] \frac{80}{20} = \frac{100}{y} \\ 80 \times y = 100 \times 20 \\ 80 \times y = 2000 \\ y = \frac{2000}{80} \\ \boxed{y = 25}[/tex]
⇒Calculamos "x + y" :
[tex]→ \boxed{x + y = 36 + 25 = 61 }[/tex]
∴ RESPUESTA:
[tex] \boxed{x + y = 61}[/tex]
☆ PROBLEMA 15
Gráfico Inversamente Proporcional
[tex]6 \times x = 18 \times 4 \\ 6 \times x = 72 \\ x = \frac{72}{6} \\ \boxed{x = 12}[/tex]
∴ RESPUESTA:
[tex] \boxed{x = 12}[/tex]
☆ PROBLEMA 17
Gráfico Directamente Proporcional
[tex] \frac{36}{a} = \frac{a}{16} = \frac{b}{8} \\ [/tex]
⇒Hallamos el valor de "a" :
[tex] \frac{36}{a} = \frac{a}{16} \\ 36 \times 16 = a \times a \\ 576 = {a}^{2} \\ \sqrt{576} = a \\ \boxed{ 24 = a}[/tex]
⇒Hallamos el valor de "b" :
[tex] \frac{a}{16} = \frac{b}{8} \\ \frac{24}{16} = \frac{b}{8} \\ 24 \times 8 = b \times 16 \\ 192 = b \times 16 \\ \frac{192}{16} = b \\ \boxed{12 = b}[/tex]
⇒Hallamos "a - b" :
[tex]→ \boxed{a - b = 24 - 12 = 12}[/tex]
∴ RESPUESTA:
[tex] \boxed{a - b = 12}[/tex]