La respuesta es 5 y se obtuvo mediante..
Conociendo su calculo mediante
[tex]\mathrm{\'Area = (semisuma\ de\ sus \ bases)*Altura}[/tex]
[tex]\mathrm{\'Area_{total} = \left(\cfrac{7+1}{2} \right)*H}[/tex] [tex]\mathrm{\'Area_{1} = \left(\cfrac{1+x}{2} \right)*h}[/tex]
[tex]\mathrm{\'Area_{1} = \left(\cfrac{1+x}{2} \right)*h}[/tex] [tex]\mathrm{\'Area_{2} = \left(\cfrac{x+7}{2} \right)*(H-h)}[/tex]
[tex]\mathrm{\'Area_{1} =\'Area_{2} }[/tex]
[tex]\mathrm{\'Area_{total}=\'Area_1+\'Area_2}[/tex]
[tex]\mathrm{\'Area_{total}=\'Area_1+\'Area_1}[/tex]
[tex]\mathrm{\'Area_{total}=2*\'Area_1}[/tex]
[tex]\mathrm{4H=2* \left(\cfrac{1+x}{2} \right)*h}[/tex]
[tex]\mathrm{\cfrac{H}{h} = \left(\cfrac{1+x}{4} \right)}[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)*h=\left(\cfrac{x+7}{2} \right)*(H-h)}[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)=\left(\cfrac{x+7}{2} \right)*\left(\cfrac{H-h}{h}\right)}[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)=\left(\cfrac{x+7}{2} \right)*\left(\cfrac{H}{h}-1\right)}[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)=\left(\cfrac{x+7}{2} \right)*\left(\left(\cfrac{1+x}{4} \right)-1\right)}[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)=\left(\cfrac{x+7}{2} \right)*\left(\cfrac{x-3}{4}\right)}[/tex]
[tex]\mathrm{4*(1+x)=(x+7)*(x-3)}[/tex]
[tex]\mathrm{4*(1+x)=x^2+4x-21}[/tex]
[tex]\mathrm{4+4x=x^2+4x-21}[/tex]
[tex]\mathrm{4+21=x^2}[/tex]
[tex]\mathrm{25=x^2}[/tex]
[tex]\mathrm{\sqrt{25}=\sqrt{x^2}}[/tex]
[tex]\mathrm{x=\pm5}[/tex]
[tex]\mathrm{x=5}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
La respuesta es 5 y se obtuvo mediante..
Área de un trapecio
Conociendo su calculo mediante
[tex]\mathrm{\'Area = (semisuma\ de\ sus \ bases)*Altura}[/tex]
En el problema
[tex]\mathrm{\'Area_{total} = \left(\cfrac{7+1}{2} \right)*H}[/tex] [tex]\mathrm{\'Area_{1} = \left(\cfrac{1+x}{2} \right)*h}[/tex]
[tex]\mathrm{\'Area_{1} = \left(\cfrac{1+x}{2} \right)*h}[/tex] [tex]\mathrm{\'Area_{2} = \left(\cfrac{x+7}{2} \right)*(H-h)}[/tex]
[tex]\mathrm{\'Area_{1} =\'Area_{2} }[/tex]
[tex]\mathrm{\'Area_{total}=\'Area_1+\'Area_2}[/tex]
[tex]\mathrm{\'Area_{total}=\'Area_1+\'Area_1}[/tex]
[tex]\mathrm{\'Area_{total}=2*\'Area_1}[/tex]
[tex]\mathrm{4H=2* \left(\cfrac{1+x}{2} \right)*h}[/tex]
[tex]\mathrm{\cfrac{H}{h} = \left(\cfrac{1+x}{4} \right)}[/tex]
[tex]\mathrm{\'Area_{1} =\'Area_{2} }[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)*h=\left(\cfrac{x+7}{2} \right)*(H-h)}[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)=\left(\cfrac{x+7}{2} \right)*\left(\cfrac{H-h}{h}\right)}[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)=\left(\cfrac{x+7}{2} \right)*\left(\cfrac{H}{h}-1\right)}[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)=\left(\cfrac{x+7}{2} \right)*\left(\left(\cfrac{1+x}{4} \right)-1\right)}[/tex]
[tex]\mathrm{ \left(\cfrac{1+x}{2} \right)=\left(\cfrac{x+7}{2} \right)*\left(\cfrac{x-3}{4}\right)}[/tex]
[tex]\mathrm{4*(1+x)=(x+7)*(x-3)}[/tex]
[tex]\mathrm{4*(1+x)=x^2+4x-21}[/tex]
[tex]\mathrm{4+4x=x^2+4x-21}[/tex]
[tex]\mathrm{4+21=x^2}[/tex]
[tex]\mathrm{25=x^2}[/tex]
[tex]\mathrm{\sqrt{25}=\sqrt{x^2}}[/tex]
[tex]\mathrm{x=\pm5}[/tex]
[tex]\mathrm{x=5}[/tex]
Un cordial saludo.