Respuesta:
6). 6² + x² = (4+x)²
36 + x² = 16 + 8x + x²
20= 8x
x= 2,5
Entonces el radio es 4 + 2,5 = 6,5
Explicación paso a paso:
[tex]6 )[/tex]
[tex]Radio: R =?[/tex]
[tex]OH = R - 4[/tex]
[tex]OB = R[/tex]
Por Pitágoras:
[tex]R^{2} = (BH)^{2} + (OH )^{2}[/tex]
[tex]R^{2} = (6)^{2} +(R-4)^{2}[/tex]
[tex]R^{2} = 36 + R^{2} -8R+16[/tex]
[tex]R^{2} -R^{2} +8R = 36+16[/tex]
[tex]8R= 52[/tex]
[tex]R = \frac{52}{8}[/tex]
[tex]R = 6.5m[/tex]
[tex]Radio: R = 6.5m[/tex]
_____________________________________________________
[tex]7 )[/tex]
[tex]AB = 5u ; BC = ? ; AC = 13u[/tex]
[tex]BC = \sqrt{(AC)^{2} -(BC)^{2} } = \sqrt{(13)^{2}-(5)^{2} }[/tex]
[tex]BC = \sqrt{169-25} = \sqrt{144}[/tex]
[tex]BC = 12u[/tex]
[tex](BC)^{2} = AC*HC[/tex]
[tex](12)^{2} =13*HC[/tex]
[tex]HC = \frac{144}{13}[/tex]
[tex]x = \sqrt{(BC)^{2}-(HC)^{2} } = \sqrt{(12)^{2}-(\frac{144}{13} )^{2} }[/tex]
[tex]x = \sqrt{144- \frac{20736}{169} } =\sqrt{\frac{3600}{169} }[/tex]
[tex]x = \frac{60}{13}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
6). 6² + x² = (4+x)²
36 + x² = 16 + 8x + x²
20= 8x
x= 2,5
Entonces el radio es 4 + 2,5 = 6,5
Verified answer
Respuesta:
Explicación paso a paso:
[tex]6 )[/tex]
[tex]Radio: R =?[/tex]
[tex]OH = R - 4[/tex]
[tex]OB = R[/tex]
Por Pitágoras:
[tex]R^{2} = (BH)^{2} + (OH )^{2}[/tex]
[tex]R^{2} = (6)^{2} +(R-4)^{2}[/tex]
[tex]R^{2} = 36 + R^{2} -8R+16[/tex]
[tex]R^{2} -R^{2} +8R = 36+16[/tex]
[tex]8R= 52[/tex]
[tex]R = \frac{52}{8}[/tex]
[tex]R = 6.5m[/tex]
[tex]Radio: R = 6.5m[/tex]
_____________________________________________________
[tex]7 )[/tex]
[tex]AB = 5u ; BC = ? ; AC = 13u[/tex]
Por Pitágoras:
[tex]BC = \sqrt{(AC)^{2} -(BC)^{2} } = \sqrt{(13)^{2}-(5)^{2} }[/tex]
[tex]BC = \sqrt{169-25} = \sqrt{144}[/tex]
[tex]BC = 12u[/tex]
[tex](BC)^{2} = AC*HC[/tex]
[tex](12)^{2} =13*HC[/tex]
[tex]HC = \frac{144}{13}[/tex]
[tex]x = \sqrt{(BC)^{2}-(HC)^{2} } = \sqrt{(12)^{2}-(\frac{144}{13} )^{2} }[/tex]
[tex]x = \sqrt{144- \frac{20736}{169} } =\sqrt{\frac{3600}{169} }[/tex]
[tex]x = \frac{60}{13}[/tex]