5. [tex]\sf\lim\limits_{x \to \infty} \frac{(x - 1)^{2}(x^{2} +3)}{3x^{4}-2x^{2} +4x-5 }[/tex]
[tex]\sf\\=\lim\limits_{x \to \infty} \frac{(x^{2}-2x+1)(x^{2} +3)}{3x^{4}-2x^{2} +4x-5 }\\\\=\lim\limits_{x \to \infty} \frac{x^{4}-2x^{3} +4x^{2} -6x+3 }{3x^{4}-2x^{2} +4x-5 }[/tex]
Pangkat tertinggi atas = m
Pangkat tertinggi bawah = n
Karena m = n, maka hasilnya koefisien xᵐ dibagi koefisien xⁿ.
[tex]\boxed{\sf =\frac{1}{3} }[/tex]
6. [tex]\sf \lim\limits_{x \to \infty} (\sqrt{4x^{2}+7x-5 } -\sqrt{4x^{2} -3x+2} )[/tex]
Jika bentuk [tex]\sf \lim\limits_{x \to \infty} (\sqrt{ax^{2}+bx+c } -\sqrt{px^{2} +qx+r} )[/tex] dengan a = p
Maka hasilnya [tex]\sf \frac{b-q}{2\sqrt{a} }[/tex] .
[tex]\sf \\=\frac{7-(-3)}{2\sqrt{4} } \\\\=\frac{7+3}{2\cdot2} \\\\=\frac{10}{4} \\\\\boxed{\sf =2,5}[/tex]
7. [tex]\sf \lim\limits_{x \to \infty} ((x+5) -\sqrt{x^{2} +4x-3} )[/tex]
[tex]\sf\\ =\lim\limits_{x \to \infty} (\sqrt{(x+5)^{2} } -\sqrt{x^{2} +4x-3} )\\\\=\lim\limits_{x \to \infty} (\sqrt{x^{2} +10x+25 } -\sqrt{x^{2} +4x-3} )[/tex]
[tex]\sf\\=\frac{10-4}{2\sqrt{1} } \\\\=\frac{6}{2} \\\\\boxed{\sf =3}[/tex]
8. [tex]\sf \lim\limits_{x \to \infty} (\sqrt{9x^{2} +12x-5}-(3x-2) )[/tex]
[tex]\sf \\=\lim\limits_{x \to \infty} (\sqrt{9x^{2} +12x-5}-\sqrt{(3x-2)^{2} }\:)\\\\=\lim\limits_{x \to \infty} (\sqrt{9x^{2} +12x-5}-\sqrt{9x^{2} -12x+4} )\\\\=\frac{12-(-12)}{2\sqrt{9} } \\\\=\frac{12+12}{2\cdot 3} \\\\=\frac{24}{6} \\\\\boxed{\sf =4}[/tex]
[tex]\boxed{\sf{shf}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
∞ Limit Tak Hingga ∞
5. [tex]\sf\lim\limits_{x \to \infty} \frac{(x - 1)^{2}(x^{2} +3)}{3x^{4}-2x^{2} +4x-5 }[/tex]
[tex]\sf\\=\lim\limits_{x \to \infty} \frac{(x^{2}-2x+1)(x^{2} +3)}{3x^{4}-2x^{2} +4x-5 }\\\\=\lim\limits_{x \to \infty} \frac{x^{4}-2x^{3} +4x^{2} -6x+3 }{3x^{4}-2x^{2} +4x-5 }[/tex]
Pangkat tertinggi atas = m
Pangkat tertinggi bawah = n
Karena m = n, maka hasilnya koefisien xᵐ dibagi koefisien xⁿ.
[tex]\boxed{\sf =\frac{1}{3} }[/tex]
6. [tex]\sf \lim\limits_{x \to \infty} (\sqrt{4x^{2}+7x-5 } -\sqrt{4x^{2} -3x+2} )[/tex]
Jika bentuk [tex]\sf \lim\limits_{x \to \infty} (\sqrt{ax^{2}+bx+c } -\sqrt{px^{2} +qx+r} )[/tex] dengan a = p
Maka hasilnya [tex]\sf \frac{b-q}{2\sqrt{a} }[/tex] .
[tex]\sf \\=\frac{7-(-3)}{2\sqrt{4} } \\\\=\frac{7+3}{2\cdot2} \\\\=\frac{10}{4} \\\\\boxed{\sf =2,5}[/tex]
7. [tex]\sf \lim\limits_{x \to \infty} ((x+5) -\sqrt{x^{2} +4x-3} )[/tex]
[tex]\sf\\ =\lim\limits_{x \to \infty} (\sqrt{(x+5)^{2} } -\sqrt{x^{2} +4x-3} )\\\\=\lim\limits_{x \to \infty} (\sqrt{x^{2} +10x+25 } -\sqrt{x^{2} +4x-3} )[/tex]
Jika bentuk [tex]\sf \lim\limits_{x \to \infty} (\sqrt{ax^{2}+bx+c } -\sqrt{px^{2} +qx+r} )[/tex] dengan a = p
Maka hasilnya [tex]\sf \frac{b-q}{2\sqrt{a} }[/tex] .
[tex]\sf\\=\frac{10-4}{2\sqrt{1} } \\\\=\frac{6}{2} \\\\\boxed{\sf =3}[/tex]
8. [tex]\sf \lim\limits_{x \to \infty} (\sqrt{9x^{2} +12x-5}-(3x-2) )[/tex]
[tex]\sf \\=\lim\limits_{x \to \infty} (\sqrt{9x^{2} +12x-5}-\sqrt{(3x-2)^{2} }\:)\\\\=\lim\limits_{x \to \infty} (\sqrt{9x^{2} +12x-5}-\sqrt{9x^{2} -12x+4} )\\\\=\frac{12-(-12)}{2\sqrt{9} } \\\\=\frac{12+12}{2\cdot 3} \\\\=\frac{24}{6} \\\\\boxed{\sf =4}[/tex]
[tex]\boxed{\sf{shf}}[/tex]