1. [tex]\sf\lim\limits_{x \to \infty} \frac{2x^{3}+3x^{2} -4 }{x^{3}-4x+2 }[/tex]
Jika bentuk [tex]\sf\lim\limits_{x \to \infty} \frac{ax^{m}+... }{bx^{n}+... }[/tex] dengan m = n → 3 = 3
Maka hasilnya [tex]\sf \frac{a}{b}[/tex] .
[tex]\sf\\=\frac{2}{1} \\\\\boxed{\sf =2}[/tex]
2. [tex]\sf\lim\limits_{x \to \infty} \frac{x^{4}+3x^{2} -9 }{x^{7}+2x^{3} -3 }[/tex]
Jika bentuk [tex]\sf\lim\limits_{x \to \infty} \frac{ax^{m}+... }{bx^{n}+... }[/tex] dengan m < n → 4 < 7
Maka hasilnya 0.
[tex]\boxed{\sf =0}[/tex]
3. [tex]\sf\lim\limits_{x \to \infty} \frac{2x^{6}+3x^{4} -5 }{4x^{5}-2x^{2} +7 }[/tex]
Jika bentuk [tex]\sf\lim\limits_{x \to \infty} \frac{ax^{m}+... }{bx^{n}+... }[/tex] dengan m > n → 6 > 5
Maka hasilnya ∞.
[tex]\boxed{\sf =\infty}[/tex]
4. [tex]\sf\lim\limits_{x \to \infty} \frac{3x+7 }{ \sqrt{4x^{2}+3x-2 } -\sqrt{x^{2} -5x+2} }[/tex]
[tex]\sf \\=\lim\limits_{x \to \infty} \frac{3x+7 }{ \sqrt{4x^{2}+3x-2 } -\sqrt{x^{2} -5x+2} }\cdot \frac{\frac{1}{x}}{\frac{1}{\sqrt{x^{2} } } } \\ \\\\=\lim\limits _{x\to \infty }\frac{3+\frac{7}{x}}{\sqrt{4+\frac{3}{x}-\frac{2}{x^{2}}}-\sqrt{1-\frac{5}{x}+\frac{2}{x^{2} }} }\\\\\\=\frac{\lim\limits _{x\to \infty }\left(3+\frac{7}{x}\right)}{\lim\limits _{x\to \infty }\left(\sqrt{4+\frac{3}{x}-\frac{2}{x^{2} }}-\sqrt{1-\frac{5}{x}+\frac{2}{x^{2} }}\right)}[/tex]
[tex]\sf\\=\frac{3+\frac{7}{\infty} }{\sqrt{4+\frac{3}{\infty}-\frac{2}{\infty^{2} }}-\sqrt{1-\frac{5}{\infty}+\frac{2}{\infty^{2} }} }\\\\=\frac{3+0}{\sqrt{4+0-0}-\sqrt{1-0+0} } \\\\=\frac{3}{\sqrt{4} -\sqrt{1} } \\\\=\frac{3}{2-1} \\\\\boxed{\sf =3}[/tex]
[tex]\boxed{\sf{shf}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
∞ Limit Tak Hingga ∞
1. [tex]\sf\lim\limits_{x \to \infty} \frac{2x^{3}+3x^{2} -4 }{x^{3}-4x+2 }[/tex]
Jika bentuk [tex]\sf\lim\limits_{x \to \infty} \frac{ax^{m}+... }{bx^{n}+... }[/tex] dengan m = n → 3 = 3
Maka hasilnya [tex]\sf \frac{a}{b}[/tex] .
[tex]\sf\\=\frac{2}{1} \\\\\boxed{\sf =2}[/tex]
2. [tex]\sf\lim\limits_{x \to \infty} \frac{x^{4}+3x^{2} -9 }{x^{7}+2x^{3} -3 }[/tex]
Jika bentuk [tex]\sf\lim\limits_{x \to \infty} \frac{ax^{m}+... }{bx^{n}+... }[/tex] dengan m < n → 4 < 7
Maka hasilnya 0.
[tex]\boxed{\sf =0}[/tex]
3. [tex]\sf\lim\limits_{x \to \infty} \frac{2x^{6}+3x^{4} -5 }{4x^{5}-2x^{2} +7 }[/tex]
Jika bentuk [tex]\sf\lim\limits_{x \to \infty} \frac{ax^{m}+... }{bx^{n}+... }[/tex] dengan m > n → 6 > 5
Maka hasilnya ∞.
[tex]\boxed{\sf =\infty}[/tex]
4. [tex]\sf\lim\limits_{x \to \infty} \frac{3x+7 }{ \sqrt{4x^{2}+3x-2 } -\sqrt{x^{2} -5x+2} }[/tex]
[tex]\sf \\=\lim\limits_{x \to \infty} \frac{3x+7 }{ \sqrt{4x^{2}+3x-2 } -\sqrt{x^{2} -5x+2} }\cdot \frac{\frac{1}{x}}{\frac{1}{\sqrt{x^{2} } } } \\ \\\\=\lim\limits _{x\to \infty }\frac{3+\frac{7}{x}}{\sqrt{4+\frac{3}{x}-\frac{2}{x^{2}}}-\sqrt{1-\frac{5}{x}+\frac{2}{x^{2} }} }\\\\\\=\frac{\lim\limits _{x\to \infty }\left(3+\frac{7}{x}\right)}{\lim\limits _{x\to \infty }\left(\sqrt{4+\frac{3}{x}-\frac{2}{x^{2} }}-\sqrt{1-\frac{5}{x}+\frac{2}{x^{2} }}\right)}[/tex]
[tex]\sf\\=\frac{3+\frac{7}{\infty} }{\sqrt{4+\frac{3}{\infty}-\frac{2}{\infty^{2} }}-\sqrt{1-\frac{5}{\infty}+\frac{2}{\infty^{2} }} }\\\\=\frac{3+0}{\sqrt{4+0-0}-\sqrt{1-0+0} } \\\\=\frac{3}{\sqrt{4} -\sqrt{1} } \\\\=\frac{3}{2-1} \\\\\boxed{\sf =3}[/tex]
[tex]\boxed{\sf{shf}}[/tex]