Jawaban:
Himpunan penyelesaian dari persamaan x² + 3x - 6 adalah ...
x² + 3x - 6 = 0
[tex]\begin{aligned}\sf x_{1,2} &= \sf \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a} \\&= \sf \frac{ - ( 3)± \sqrt{ { 3}^{2} - 4( 1)( - 6)} }{2( 1)} \\&= \sf \frac{ - 3± \sqrt{9 - 4( - 6)} }{ 2} \\ &= \sf \frac{ - 3± \sqrt{9 + 24} }{ 2} \\ &= \sf \frac{ - 3± \sqrt{33} }{ 2} \\ &= \sf \frac{ - 3±\sqrt{33}}{ 2} \\ \\ \sf x_{1} &= \sf \frac{ - 3 + \sqrt{33}}{ 2} \\ &= \sf \red{ \frac{ \sqrt{33}-3}{2} } \\ \\ \sf x_{2} &= \sf \frac{ - 3 - \sqrt{34}}{ 2} \\ \sf &= \sf \red{ \frac{-\sqrt{33}-3}{2}} \end{aligned}[/tex]
[tex] \sf HP = \{ \red{\frac{-\sqrt{33}-3}{2} ,\frac{\sqrt{33}-3}{2}} \}[/tex]
'조슈아' (Svt)
a = 1
b = 3
c = -6
ABC :
= -3 ± √3² - 4(1(-6)/2(1)
= -3 ± √9 - 4(-6)/2
= (-3 ± √9 + 24)/2
= (-3 ± √33)/2
x1 = (-3 + √33)/2
x2 = (-3 - √33)/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
Penyelesaian :
Himpunan penyelesaian dari persamaan x² + 3x - 6 adalah ...
x² + 3x - 6 = 0
Rumus ABC
[tex]\begin{aligned}\sf x_{1,2} &= \sf \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a} \\&= \sf \frac{ - ( 3)± \sqrt{ { 3}^{2} - 4( 1)( - 6)} }{2( 1)} \\&= \sf \frac{ - 3± \sqrt{9 - 4( - 6)} }{ 2} \\ &= \sf \frac{ - 3± \sqrt{9 + 24} }{ 2} \\ &= \sf \frac{ - 3± \sqrt{33} }{ 2} \\ &= \sf \frac{ - 3±\sqrt{33}}{ 2} \\ \\ \sf x_{1} &= \sf \frac{ - 3 + \sqrt{33}}{ 2} \\ &= \sf \red{ \frac{ \sqrt{33}-3}{2} } \\ \\ \sf x_{2} &= \sf \frac{ - 3 - \sqrt{34}}{ 2} \\ \sf &= \sf \red{ \frac{-\sqrt{33}-3}{2}} \end{aligned}[/tex]
[tex] \sf HP = \{ \red{\frac{-\sqrt{33}-3}{2} ,\frac{\sqrt{33}-3}{2}} \}[/tex]
'조슈아' (Svt)
x² + 3x - 6 = 0
a = 1
b = 3
c = -6
ABC :
= -3 ± √3² - 4(1(-6)/2(1)
= -3 ± √9 - 4(-6)/2
= (-3 ± √9 + 24)/2
= (-3 ± √33)/2
x1 = (-3 + √33)/2
x2 = (-3 - √33)/2