Jawab:
limit trigonometri bentu tak tentu
Penjelasan dengan langkah-langkah:
lim (x-> π/2) { 1 - sin x ] / (x - π/2 )
* ubah sin x = cos (π/2 - x)
= lim (x-> π/2) { 1 - cos (π/2 - x) } / (x - π/2 )
= lim (x -> π/2) [ 1 - { 1 - 2 sin² 1/2 (π/2 - x) }] / - (π/2 - x)
= lim (x -> π/2) ( 2 sin² 1/2 (π/2 - x) ) / - (π/2 - x)
= lim(x-> π/2) 2 sin 1/2 (π/2 - x) sin 1/2 (π/2 - x) / - (π/2 - x)
= 2 (1/2) . lim (x ->0) sin 1/2 (π/2 - x)
= 1 . sin 1/2 (0)
= 1 (0)
= 0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
limit trigonometri bentu tak tentu
Penjelasan dengan langkah-langkah:
lim (x-> π/2) { 1 - sin x ] / (x - π/2 )
* ubah sin x = cos (π/2 - x)
= lim (x-> π/2) { 1 - cos (π/2 - x) } / (x - π/2 )
= lim (x -> π/2) [ 1 - { 1 - 2 sin² 1/2 (π/2 - x) }] / - (π/2 - x)
= lim (x -> π/2) ( 2 sin² 1/2 (π/2 - x) ) / - (π/2 - x)
= lim(x-> π/2) 2 sin 1/2 (π/2 - x) sin 1/2 (π/2 - x) / - (π/2 - x)
= 2 (1/2) . lim (x ->0) sin 1/2 (π/2 - x)
= 1 . sin 1/2 (0)
= 1 (0)
= 0