[tex]\(log_{\sqrt{3}}(5)+log_{\sqrt{5}}(2)\)[/tex]
Zacznijmy od pierwszego logarytmu. Możemy to przeliczyć na logarytm dziesiętny, korzystając z zasady zmiany podstawy logarytmu:
[tex]\(log_{\sqrt{3}}(5)=\frac{log_{10}(5)}{log_{10}(\sqrt{3})}=\frac{log_{10}(5)}{\frac{1}{2}log_{10}(3)}=2~log_{10}(5)-log_{10}(3)\mathsf{\ }\)[/tex]
Teraz drugi logarytm:
[tex]\(log_{\sqrt{5}}(2)=\frac{log_{10}(2)}{log_{10}(\sqrt{5})}=\frac{log_{10}(2)}{\frac{1}{2}log_{10}(5)}=2~log_{10}(2)-log_{10}(5)\mathsf{\ }\)[/tex]
Teraz możemy dodać oba wyrażenia:
[tex]\(log_{\sqrt{3}}(5)+log_{\sqrt{5}}(2)=2~log_{10}(5)-log_{10}(3)+2~log_{10}(2)-log_{10}(5)\mathsf{\ }\)[/tex]
[tex]\(=2~log_{10}(5)+2~log_{10}(2)-log_{10}(3)-log_{10}(5)\mathsf{\ }\)[/tex]
[tex]\(=2(log_{10}(5)+log_{10}(2))-log_{10}(3)-log_{10}(5)\mathsf{\ }\)[/tex]
[tex]\(=2~log_{10}(10)-log_{10}(3)-log_{10}(5)\mathsf{\ }\)[/tex]
[tex]= 2 - log_10(3) - log_10(5)[/tex]
Ostatecznie, [tex]$\log_{\sqrt{3}}(5) + \log_{\sqrt{5}}(2) = 2 - \log_{10}(3) - \log_{10}(5)$[/tex].
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]\(log_{\sqrt{3}}(5)+log_{\sqrt{5}}(2)\)[/tex]
Zacznijmy od pierwszego logarytmu. Możemy to przeliczyć na logarytm dziesiętny, korzystając z zasady zmiany podstawy logarytmu:
[tex]\(log_{\sqrt{3}}(5)=\frac{log_{10}(5)}{log_{10}(\sqrt{3})}=\frac{log_{10}(5)}{\frac{1}{2}log_{10}(3)}=2~log_{10}(5)-log_{10}(3)\mathsf{\ }\)[/tex]
Teraz drugi logarytm:
[tex]\(log_{\sqrt{5}}(2)=\frac{log_{10}(2)}{log_{10}(\sqrt{5})}=\frac{log_{10}(2)}{\frac{1}{2}log_{10}(5)}=2~log_{10}(2)-log_{10}(5)\mathsf{\ }\)[/tex]
Teraz możemy dodać oba wyrażenia:
[tex]\(log_{\sqrt{3}}(5)+log_{\sqrt{5}}(2)=2~log_{10}(5)-log_{10}(3)+2~log_{10}(2)-log_{10}(5)\mathsf{\ }\)[/tex]
[tex]\(=2~log_{10}(5)+2~log_{10}(2)-log_{10}(3)-log_{10}(5)\mathsf{\ }\)[/tex]
[tex]\(=2(log_{10}(5)+log_{10}(2))-log_{10}(3)-log_{10}(5)\mathsf{\ }\)[/tex]
[tex]\(=2~log_{10}(10)-log_{10}(3)-log_{10}(5)\mathsf{\ }\)[/tex]
[tex]= 2 - log_10(3) - log_10(5)[/tex]
Ostatecznie, [tex]$\log_{\sqrt{3}}(5) + \log_{\sqrt{5}}(2) = 2 - \log_{10}(3) - \log_{10}(5)$[/tex].