G.turunan arctanx = 1/1+x²
y = arctan(1+2x/1-2x) <= 1+2x = u , 1-2x = v
y = arctan(u/v)
d(arctan(u/v)) = 1/1+(u/v²) . d(u/v) <= untuk d(u/v) pake sifat turunan pembagian
d(arctan(u/v)) = 1/1+u²/v² . 1/v²(du.v - u.dv).dx
= v²/v² + u² . 1/v²(du.v-u.dv).dx <= v² yang diatas dicoret
= 1/v²+u² . (du.v - u.dv)dx <= u = 1+2x , du = 2 , v = 1-2x , dv = -2
= 1/(1-2x)²+(1+2x)² . (2.(1-2x) - (-2) . (1+2x))dx
= 1/(2x - 1)²+(2x+1)² . (2((1-2x)+(1+2x))).dx
= 1/(2x-1)²+(2x+1)² . (2.2).dx <= (2x²-1) = 2x²-4x + 1 , (2x+1)² = 2x²+4x+1 , kalau ditambah jadi 4x²+2
= 4/4x²+2 . dx
= 4/2(2x²+1) . dx
d(arctan (u/v)) = 2/(2x²+1) . dx
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
G.turunan arctanx = 1/1+x²
y = arctan(1+2x/1-2x) <= 1+2x = u , 1-2x = v
y = arctan(u/v)
d(arctan(u/v)) = 1/1+(u/v²) . d(u/v) <= untuk d(u/v) pake sifat turunan pembagian
d(arctan(u/v)) = 1/1+u²/v² . 1/v²(du.v - u.dv).dx
= v²/v² + u² . 1/v²(du.v-u.dv).dx <= v² yang diatas dicoret
= 1/v²+u² . (du.v - u.dv)dx <= u = 1+2x , du = 2 , v = 1-2x , dv = -2
= 1/(1-2x)²+(1+2x)² . (2.(1-2x) - (-2) . (1+2x))dx
= 1/(2x - 1)²+(2x+1)² . (2((1-2x)+(1+2x))).dx
= 1/(2x-1)²+(2x+1)² . (2.2).dx <= (2x²-1) = 2x²-4x + 1 , (2x+1)² = 2x²+4x+1 , kalau ditambah jadi 4x²+2
= 4/4x²+2 . dx
= 4/2(2x²+1) . dx
d(arctan (u/v)) = 2/(2x²+1) . dx