Las ecuaciones paramétricas y cartesiana del plano son:
-2x + 3y + 5z - 6 = 0
Partir de la ecuación vectorial del plano:
PA = (x - 1, y - 1, z - 1)
PA = λ u + μ v
sustituir;
PA = λ(1, -1, 1) + μ(2, 3, -1)
(x - 1, y - 1, z - 1) = λ(1, -1, 1) + μ(2, 3, -1)
(x, y, z) - (1, 1, 1) = λ(1, -1, 1) + μ(2, 3, -1)
(x, y, z) = (1, 1, 1) + λ(1, -1, 1) + μ(2, 3, -1)
(x, y, z) = (1 + λ + 2μ, 1 - λ + 3μ, 1 + λ - μ)
Ecuación parametrica:
x = 1 + λ + 2μ
y = 1 - λ + 3μ
z = 1 + λ - μ
Aplicar determinante:
[tex]\left[\begin{array}{ccc}x-1&1&2\\y-1&-1&3\\z-1&1&-1\end{array}\right]= 0\\[/tex]
(x - 1) [(-1)(-1) -(1)(3)] - (1)[(y - 1)(-1)-(z-1)(3)] + 2[(y -1)(1)-(z-1)(-1)] = 0
(x - 1) [1 - 3] - [(1 - y) - (3z - 3)] + 2[(y - 1) - (1 - z)] = 0
-2x + 2 - [4 - y - 3z] + 2[y - 2 + z] = 0
-2x + 2 - 4 + y + 3z + 2y - 4 + 2z = 0
Ecuación cartesiana del plano:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Las ecuaciones paramétricas y cartesiana del plano son:
-2x + 3y + 5z - 6 = 0
Partir de la ecuación vectorial del plano:
PA = (x - 1, y - 1, z - 1)
PA = λ u + μ v
sustituir;
PA = λ(1, -1, 1) + μ(2, 3, -1)
(x - 1, y - 1, z - 1) = λ(1, -1, 1) + μ(2, 3, -1)
(x, y, z) - (1, 1, 1) = λ(1, -1, 1) + μ(2, 3, -1)
(x, y, z) = (1, 1, 1) + λ(1, -1, 1) + μ(2, 3, -1)
(x, y, z) = (1 + λ + 2μ, 1 - λ + 3μ, 1 + λ - μ)
Ecuación parametrica:
x = 1 + λ + 2μ
y = 1 - λ + 3μ
z = 1 + λ - μ
Aplicar determinante:
[tex]\left[\begin{array}{ccc}x-1&1&2\\y-1&-1&3\\z-1&1&-1\end{array}\right]= 0\\[/tex]
(x - 1) [(-1)(-1) -(1)(3)] - (1)[(y - 1)(-1)-(z-1)(3)] + 2[(y -1)(1)-(z-1)(-1)] = 0
(x - 1) [1 - 3] - [(1 - y) - (3z - 3)] + 2[(y - 1) - (1 - z)] = 0
-2x + 2 - [4 - y - 3z] + 2[y - 2 + z] = 0
-2x + 2 - 4 + y + 3z + 2y - 4 + 2z = 0
Ecuación cartesiana del plano:
-2x + 3y + 5z - 6 = 0