Respuesta:
d)15º
Recordar;
[tex]\sin (x+90)=\cos x[/tex]
[tex]\sin (90-2x)=\cos 2x[/tex]
Aplicando La ley de Senos;
[tex]\dfrac{\sin (90+x)}{a} =\dfrac{\sin x}{8-a}[/tex]
[tex]\dfrac{8-a}{a} =\dfrac{ \sin x}{\sin(90-x)}[/tex]
[tex]\dfrac{8-a}{a} =\dfrac{ \sin x}{\cos x}[/tex]
[tex]\dfrac{8-a+a}{a} =\dfrac{ \sin x+\cos x}{\cos x}[/tex]
[tex]\dfrac{8}{a} =\dfrac{ \sin x+\cos x}{\cos x}[/tex]
[tex]a=\dfrac{8\cos x}{\sin x + \cos x}............(1)[/tex]
Aplicando nuevamente Ley de Senos;
[tex]\dfrac{\sin(90+ x)}{a} =\dfrac{\sin(90-2x)}{4\sqrt{2} }[/tex]
[tex]\dfrac{\cos x }{a} =\dfrac{\cos 2x}{4\sqrt{2} }............(2)[/tex]
Reemplazando (1) en (2);
[tex]\dfrac{\cos x}{\dfrac{8\cos x}{\sin x + \cos x}} =\dfrac{\cos 2x}{4\sqrt{2} }[/tex]
[tex]\dfrac{\cos x(\sin x+\cos x)}{8\cos x} =\dfrac{\cos 2x}{4\sqrt{2} }[/tex]
[tex]\sin x + \cos x=\dfrac{8\cos 2x}{4\sqrt{2} }[/tex]
[tex]\sqrt{2} \sin x+\sqrt{2} \cos x=2\cos 2x[/tex]
[tex]\dfrac{1}{2}(\sqrt{2} \sin x+\sqrt{2} \cos x ) =\cos 2x[/tex]
[tex]\dfrac{ \sqrt{2}}{2} \sin x+\dfrac{\sqrt{2} }{2} \cos x=\cos 2x[/tex]
[tex]\cos(45-x)=\cos 2x[/tex]
[tex]45-x=2x[/tex]
[tex]3x=45[/tex]
[tex]x=\dfrac{45}{3}[/tex]
[tex]\boxed{x=15^\circ}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta:
d)15º
Recordar;
[tex]\sin (x+90)=\cos x[/tex]
[tex]\sin (90-2x)=\cos 2x[/tex]
Aplicando La ley de Senos;
[tex]\dfrac{\sin (90+x)}{a} =\dfrac{\sin x}{8-a}[/tex]
[tex]\dfrac{8-a}{a} =\dfrac{ \sin x}{\sin(90-x)}[/tex]
[tex]\dfrac{8-a}{a} =\dfrac{ \sin x}{\cos x}[/tex]
[tex]\dfrac{8-a+a}{a} =\dfrac{ \sin x+\cos x}{\cos x}[/tex]
[tex]\dfrac{8}{a} =\dfrac{ \sin x+\cos x}{\cos x}[/tex]
[tex]a=\dfrac{8\cos x}{\sin x + \cos x}............(1)[/tex]
Aplicando nuevamente Ley de Senos;
[tex]\dfrac{\sin(90+ x)}{a} =\dfrac{\sin(90-2x)}{4\sqrt{2} }[/tex]
[tex]\dfrac{\cos x }{a} =\dfrac{\cos 2x}{4\sqrt{2} }............(2)[/tex]
Reemplazando (1) en (2);
[tex]\dfrac{\cos x}{\dfrac{8\cos x}{\sin x + \cos x}} =\dfrac{\cos 2x}{4\sqrt{2} }[/tex]
[tex]\dfrac{\cos x(\sin x+\cos x)}{8\cos x} =\dfrac{\cos 2x}{4\sqrt{2} }[/tex]
[tex]\sin x + \cos x=\dfrac{8\cos 2x}{4\sqrt{2} }[/tex]
[tex]\sqrt{2} \sin x+\sqrt{2} \cos x=2\cos 2x[/tex]
[tex]\dfrac{1}{2}(\sqrt{2} \sin x+\sqrt{2} \cos x ) =\cos 2x[/tex]
[tex]\dfrac{ \sqrt{2}}{2} \sin x+\dfrac{\sqrt{2} }{2} \cos x=\cos 2x[/tex]
[tex]\cos(45-x)=\cos 2x[/tex]
[tex]45-x=2x[/tex]
[tex]3x=45[/tex]
[tex]x=\dfrac{45}{3}[/tex]
[tex]\boxed{x=15^\circ}[/tex]