✌Rpta: El valor de los numeros son: a = 6 y b = 8
[tex]\boldsymbol {\mathsf {Procedimiento}}[/tex]
Identificamos los datos del enunciado
[tex]\begin{gathered} \mathsf{ \underbrace{ \mathsf{Dos \: numeros \: cuya \: suma}}_{a + b}} \: \: { \underbrace{ \mathsf{es}}_{ = }\: \: { \underbrace{ \mathsf{14}}_{ 14}}}\end{gathered}[/tex]
[tex]\begin{gathered} \mathsf{ \underbrace{ \mathsf{La \: suma \: de \: sus \: cuadrados}}_{a^{2} + b^{2}}} \: \: { \underbrace{ \mathsf{es}}_{ = }\: \: { \underbrace{ \mathsf{100}}_{ 100}}}\end{gathered}[/tex]
Ahora utilizamos los productos notables donde utilizaremos binomio suma al cuadrado
[tex]\begin {gathered}\mathsf {(a+b)^{2}=a^{2} + 2ab + b^{2}}\end {gathered}[/tex]
Lo podemos expresar así
[tex]\begin {gathered}\mathsf {(14)^{2}=100 + 2ab }\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {196-100= 2ab }\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {96= 2ab }\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {\frac {96}{2}= ab }\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {48= ab }\end {gathered}[/tex]
Ahora ya sabemos que
[tex]\begin{gathered} \mathsf{ \underbrace{ \mathsf{Dos \: numeros \: cuyo \: producto}}_{a \ . \ b}} \: \: { \underbrace{ \mathsf{es}}_{ = }\: \: { \underbrace{ \mathsf{48}}_{ 48}}}\end{gathered}[/tex]
Ahora podemos deducir que los valores de los numeros son:
[tex]\begin {gathered}\mathsf {\blacktriangleright a = 6}\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {\blacktriangleright b = 8}\end {gathered}[/tex]
Atentamente: [tex]\begin {gathered}\mathsf{\boxed{\bold {E}}_{\boxed {\bold {N}}}}\end {gathered}\begin {gathered}\mathsf{\boxed{\bold {V}}_{\boxed {\bold {E}}}}\end {gathered}\mathsf{\boxed {\bold{R}}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
✌Rpta: El valor de los numeros son: a = 6 y b = 8
[tex]\boldsymbol {\mathsf {Procedimiento}}[/tex]
Identificamos los datos del enunciado
[tex]\begin{gathered} \mathsf{ \underbrace{ \mathsf{Dos \: numeros \: cuya \: suma}}_{a + b}} \: \: { \underbrace{ \mathsf{es}}_{ = }\: \: { \underbrace{ \mathsf{14}}_{ 14}}}\end{gathered}[/tex]
[tex]\begin{gathered} \mathsf{ \underbrace{ \mathsf{La \: suma \: de \: sus \: cuadrados}}_{a^{2} + b^{2}}} \: \: { \underbrace{ \mathsf{es}}_{ = }\: \: { \underbrace{ \mathsf{100}}_{ 100}}}\end{gathered}[/tex]
Ahora utilizamos los productos notables donde utilizaremos binomio suma al cuadrado
[tex]\begin {gathered}\mathsf {(a+b)^{2}=a^{2} + 2ab + b^{2}}\end {gathered}[/tex]
Lo podemos expresar así
[tex]\begin {gathered}\mathsf {(14)^{2}=100 + 2ab }\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {196-100= 2ab }\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {96= 2ab }\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {\frac {96}{2}= ab }\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {48= ab }\end {gathered}[/tex]
Ahora ya sabemos que
[tex]\begin{gathered} \mathsf{ \underbrace{ \mathsf{Dos \: numeros \: cuya \: suma}}_{a + b}} \: \: { \underbrace{ \mathsf{es}}_{ = }\: \: { \underbrace{ \mathsf{14}}_{ 14}}}\end{gathered}[/tex]
[tex]\begin{gathered} \mathsf{ \underbrace{ \mathsf{Dos \: numeros \: cuyo \: producto}}_{a \ . \ b}} \: \: { \underbrace{ \mathsf{es}}_{ = }\: \: { \underbrace{ \mathsf{48}}_{ 48}}}\end{gathered}[/tex]
Ahora podemos deducir que los valores de los numeros son:
[tex]\begin {gathered}\mathsf {\blacktriangleright a = 6}\end {gathered}[/tex]
[tex]\begin {gathered}\mathsf {\blacktriangleright b = 8}\end {gathered}[/tex]
Atentamente: [tex]\begin {gathered}\mathsf{\boxed{\bold {E}}_{\boxed {\bold {N}}}}\end {gathered}\begin {gathered}\mathsf{\boxed{\bold {V}}_{\boxed {\bold {E}}}}\end {gathered}\mathsf{\boxed {\bold{R}}}[/tex]