Odpowiedź:
1 ) [tex]a_n = \frac{0,5 n*(n +1)}{n^2 + 5} = \frac{0,5 n^2 + 0,5 n}{n^2 + 5} = \frac{0,5 + \frac{0,5}{n} }{1 + \frac{5}{n^2} }[/tex]
więc
[tex]\lim_{n \to \infty} a_n = \frac{0,5 + 0}{1 + 0} = 0,5[/tex]
2 )
[tex]a_n = \frac{\sqrt{1 + \frac{3}{n^{10}} } + 2}{\sqrt{\frac{49}{n^5} } + \frac{1}{n^{10}} }[/tex] Podzielono licznik i mianownik przez n[tex]^5.[/tex]
więc [tex]\lim_{n \to \infty} a_n = +[/tex]∞
3) [tex]a_n = \frac{n^8 + n - ( n^8 + 3 n)}{\sqrt{n^8 + n} + \sqrt{n^8 + 3 n} } =[/tex][tex]\frac{- 3 n}{\sqrt{n^8 + n} + \sqrt{n^8 + 3 n} } = \frac{- 3}{\sqrt{n^6 + \frac{1}{n} } + \sqrt{n^6 + \frac{3}{n} } }[/tex]
[tex]\lim_{n \to \infty} a_n = 0[/tex]
Skorzystano z wzoru: a - b = [tex]\frac{a^2 - b^2}{a + b}[/tex]
4 ) - 1 ≤ cos ( [tex]n^{1000} + 3)[/tex] ≤ 1
[tex]\lim_{n \to \infty} \frac{cos ( n^{1000} + 3)}{1000^n + 3} = 0[/tex] bo [tex]\lim_{n \to \infty} ( 1000^n + 3) =[/tex] +∞
5 )
[tex]a_n = [ ( 1 - \frac{3}{n^8} )^{n^8}]^2[/tex]
[tex]\lim_{n \to \infty} a_n = [ e^{-3}]^2 = e^{-6}[/tex]
==============================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
1 ) [tex]a_n = \frac{0,5 n*(n +1)}{n^2 + 5} = \frac{0,5 n^2 + 0,5 n}{n^2 + 5} = \frac{0,5 + \frac{0,5}{n} }{1 + \frac{5}{n^2} }[/tex]
więc
[tex]\lim_{n \to \infty} a_n = \frac{0,5 + 0}{1 + 0} = 0,5[/tex]
2 )
[tex]a_n = \frac{\sqrt{1 + \frac{3}{n^{10}} } + 2}{\sqrt{\frac{49}{n^5} } + \frac{1}{n^{10}} }[/tex] Podzielono licznik i mianownik przez n[tex]^5.[/tex]
więc [tex]\lim_{n \to \infty} a_n = +[/tex]∞
3) [tex]a_n = \frac{n^8 + n - ( n^8 + 3 n)}{\sqrt{n^8 + n} + \sqrt{n^8 + 3 n} } =[/tex][tex]\frac{- 3 n}{\sqrt{n^8 + n} + \sqrt{n^8 + 3 n} } = \frac{- 3}{\sqrt{n^6 + \frac{1}{n} } + \sqrt{n^6 + \frac{3}{n} } }[/tex]
więc
[tex]\lim_{n \to \infty} a_n = 0[/tex]
Skorzystano z wzoru: a - b = [tex]\frac{a^2 - b^2}{a + b}[/tex]
4 ) - 1 ≤ cos ( [tex]n^{1000} + 3)[/tex] ≤ 1
więc
[tex]\lim_{n \to \infty} \frac{cos ( n^{1000} + 3)}{1000^n + 3} = 0[/tex] bo [tex]\lim_{n \to \infty} ( 1000^n + 3) =[/tex] +∞
5 )
[tex]a_n = [ ( 1 - \frac{3}{n^8} )^{n^8}]^2[/tex]
więc
[tex]\lim_{n \to \infty} a_n = [ e^{-3}]^2 = e^{-6}[/tex]
==============================
Szczegółowe wyjaśnienie: