En términos actuales, podemos decir que ambos, peso e inercia son proporcionales a la masa del objeto, o sea, la cantidad de materia que contiene.
El Sistema MKS y el "newton"
Considere la caída libre producto de la gravedad. La fuerza de gravedad es proporcional a la masa m, de manera que podemos escribir
F = mg (1)
en donde g es la aceleración de la gravedad, dirigida hacia abajo. Efectivamente, la proporcionalidad nos permite agregarle al lado derecho la constante de multiplicación correcta, pero no lo haremos por que lo que queremos hacer es definir algunas unidades de F.
Todas las fórmulas y unidades cuantitativas en física dependen de las unidades en las cuales las tres cantidades básicas son medidas--distancia, masa y tiempo. Permítanos por lo tanto escoger a partir de ahora el medir la ditancia en metros, la masa en kilogramos y el tiempo en segundos. Esa convención es conocida como el sistema MKS: en tanto las fórmulas contengan solo cantidades obtenidas por este sistema, ellas serán consistentes y correctas. Pero tenga cuidado... si por error mezcla las unidades MKS con gramos o centímetros ( o libras y pulgadas), puede terminar con unos resultados bastante extraños!
[Esto, finalmente, fue como el orbitador Mars Climate --una misión espacial de US$125 millones--fue perdido el 23 de Septiembre de 1999. Cuando un puequeño cohete fue disparado para ajustar su entrada a la atmósfera de Marte, el operador, un contratista de NASA, asumió que su empuje estaba dada en unidades Inglesas. En realidad, las especificaciones de la NASA estaban dadas en unidades métricas.]
En el sistema MKS el valor efectivo de g varía desde 9.78 m/s2 en el ecuador, hasta 9.83 m/s2 en los polos, debido a la rotación de la Tierra (vea la sección #24a). La ecuación (1) no solo muestra que el peso es proporcional a la masa, sino que---asumiendo que es medido en kilogramos--- introduce una unidad de F, llamada (¡no es sorpresa!) "newton."
De acuerdo a esa ecuación, una fuerza de 1 newton actuando sobre un kilogramo de masa lo acelera en 1 m/sec2, de manera que la fuerza de gravedad sobre un kilogramo de masa es aproximadamente 9.8 newtons. Con anterioridad esto se llamaba "una fuerza de un kilogramo de peso", una unidad conveniente para aplicaciones generales, (1 kg = 9.8 newton), pero no para aplicaciones exactas, debido a la variación de g alrededor del globo.
Segunda Ley de Newton
Ahora podemos expresar en números la dependencia de la aceleración en la fuerza y la masa. Lord Kelvin, un importante científico Británico en la época de la Reina Victoria, fue citado diciendo alguna vez
"cuando usted mide lo que está hablando y lo expresa en números, sabe algo acerca de eso, pero cuando no lo puede expresar en números, su conocimiento es pobre e insatisfactorio... "
De acuerdo a la segunda ley de Newton, la aceleración de un objeto es proporcional a la fuerza F actuando sobre ella e inversamente proporcional a su masa m. Expresando F en newtons obtenemos a--para cualquier aceleración, no solamente para la caída libre--de la siguiente forma
a = F/m (2)
Debemos notar que ambas a y F no solo tienen magnitudes, sino también direcciones--ambas son cantidades vectoriales. El denotar vectores (en esta sección) mediante letras en negritas, hace que la segunda ley de Newton sea leída adecuadamente:
a = F/m (3)
Esto expresa el enunciado anterior "se acelera en la dirección de la fuerza."
Muchos libros de texto escriben
F = ma (4)
pero la ecuación (3) es la manera en que se utiliza normalmente--F y m son las entradas, a es el resultado. El ejemplo abajo debe de esclarecer esto.
Ejemplo: el cohete V–2
El cohete militar V–2, utilizado por Alemania en 1945, pesaba aproximadamente 12 toneladas (12,000 kg) cargado con combustible y solo 3 toneladas (3,000) vacío. Su motor creaba un empuje de 240,000 N (newtons). Aproximando g a un valor de 10m/s2, ¿cuál era la aceleración del V–2 (1) al despegar, (2) justo antes de terminarse el combustible?
Solución Haga que la dirección hacia arriba sea positiva, la dirección hacia abajo negativa: utilizando esta convención, podremos trabajar con números en lugar de vectores. Al despegar, dos fuerzas actúan sobre el cohete: un empuje de +240,000 N, y el peso del cohete cargado, mg =–120,000 N (¡si el empuje fuera menor a 120,000 N, el cohete nunca se levantaría!). La fuerza total hacia arriba es por lo tanto
F = + 240,000 N – 120,000 N = +120,000 N,
y la aceleración inicial, de acuerdo a la segunda ley de Newton, es
a = F/m = +120,000 N/12,000 kg = 10 m/s2 = 1 g
Asi, el cohete comienza a elevarse con la misma aceleración que una piedra al comenzar a caer. Al irse consumiendo el combustible, la masa m decrece pero la fuerza no, así que esperamos que a se haga aún más grande. Al acabarse el combustible, mg = –30,000 N y tenemos
En términos actuales, podemos decir que ambos, peso e inercia son proporcionales a la masa del objeto, o sea, la cantidad de materia que contiene.
El Sistema MKS y el "newton"
Considere la caída libre producto de la gravedad. La fuerza de gravedad es proporcional a la masa m, de manera que podemos escribir
F = mg (1)
en donde g es la aceleración de la gravedad, dirigida hacia abajo. Efectivamente, la proporcionalidad nos permite agregarle al lado derecho la constante de multiplicación correcta, pero no lo haremos por que lo que queremos hacer es definir algunas unidades de F.
Todas las fórmulas y unidades cuantitativas en física dependen de las unidades en las cuales las tres cantidades básicas son medidas--distancia, masa y tiempo. Permítanos por lo tanto escoger a partir de ahora el medir la ditancia en metros, la masa en kilogramos y el tiempo en segundos. Esa convención es conocida como el sistema MKS: en tanto las fórmulas contengan solo cantidades obtenidas por este sistema, ellas serán consistentes y correctas. Pero tenga cuidado... si por error mezcla las unidades MKS con gramos o centímetros ( o libras y pulgadas), puede terminar con unos resultados bastante extraños!
[Esto, finalmente, fue como el orbitador Mars Climate --una misión espacial de US$125 millones--fue perdido el 23 de Septiembre de 1999. Cuando un puequeño cohete fue disparado para ajustar su entrada a la atmósfera de Marte, el operador, un contratista de NASA, asumió que su empuje estaba dada en unidades Inglesas. En realidad, las especificaciones de la NASA estaban dadas en unidades métricas.]
En el sistema MKS el valor efectivo de g varía desde 9.78 m/s2 en el ecuador, hasta 9.83 m/s2 en los polos, debido a la rotación de la Tierra (vea la sección #24a). La ecuación (1) no solo muestra que el peso es proporcional a la masa, sino que---asumiendo que es medido en kilogramos--- introduce una unidad de F, llamada (¡no es sorpresa!) "newton."
De acuerdo a esa ecuación, una fuerza de 1 newton actuando sobre un kilogramo de masa lo acelera en 1 m/sec2, de manera que la fuerza de gravedad sobre un kilogramo de masa es aproximadamente 9.8 newtons. Con anterioridad esto se llamaba "una fuerza de un kilogramo de peso", una unidad conveniente para aplicaciones generales, (1 kg = 9.8 newton), pero no para aplicaciones exactas, debido a la variación de g alrededor del globo.
Segunda Ley de Newton
Ahora podemos expresar en números la dependencia de la aceleración en la fuerza y la masa. Lord Kelvin, un importante científico Británico en la época de la Reina Victoria, fue citado diciendo alguna vez
"cuando usted mide lo que está hablando y lo expresa en números, sabe algo acerca de eso, pero cuando no lo puede expresar en números, su conocimiento es pobre e insatisfactorio... "
De acuerdo a la segunda ley de Newton, la aceleración de un objeto es proporcional a la fuerza F actuando sobre ella e inversamente proporcional a su masa m. Expresando F en newtons obtenemos a--para cualquier aceleración, no solamente para la caída libre--de la siguiente forma
a = F/m (2)
Debemos notar que ambas a y F no solo tienen magnitudes, sino también direcciones--ambas son cantidades vectoriales. El denotar vectores (en esta sección) mediante letras en negritas, hace que la segunda ley de Newton sea leída adecuadamente:
a = F/m (3)
Esto expresa el enunciado anterior "se acelera en la dirección de la fuerza."
Muchos libros de texto escriben
F = ma (4)
pero la ecuación (3) es la manera en que se utiliza normalmente--F y m son las entradas, a es el resultado. El ejemplo abajo debe de esclarecer esto.
Ejemplo: el cohete V–2
El cohete militar V–2, utilizado por Alemania en 1945, pesaba aproximadamente 12 toneladas (12,000 kg) cargado con combustible y solo 3 toneladas (3,000) vacío. Su motor creaba un empuje de 240,000 N (newtons). Aproximando g a un valor de 10m/s2, ¿cuál era la aceleración del V–2 (1) al despegar, (2) justo antes de terminarse el combustible?
Solución Haga que la dirección hacia arriba sea positiva, la dirección hacia abajo negativa: utilizando esta convención, podremos trabajar con números en lugar de vectores. Al despegar, dos fuerzas actúan sobre el cohete: un empuje de +240,000 N, y el peso del cohete cargado, mg =–120,000 N (¡si el empuje fuera menor a 120,000 N, el cohete nunca se levantaría!). La fuerza total hacia arriba es por lo tanto
F = + 240,000 N – 120,000 N = +120,000 N,
y la aceleración inicial, de acuerdo a la segunda ley de Newton, es
a = F/m = +120,000 N/12,000 kg = 10 m/s2 = 1 g
Asi, el cohete comienza a elevarse con la misma aceleración que una piedra al comenzar a caer. Al irse consumiendo el combustible, la masa m decrece pero la fuerza no, así que esperamos que a se haga aún más grande. Al acabarse el combustible, mg = –30,000 N y tenemos
F = + 240,000 N – 30,000 N = +210,000 N,
dando
a = F/m = +210,000 N/3,000 kg = 70 m/s2 = 7 g