Explicación paso a paso:
1/
[tex] {2x}^{2} y( {3x}^{6} {y}^{5} + 8xy + {13x}^{2} {y}^{3} )[/tex]
[tex] {2x}^{2} y \times {3x}^{6} {y}^{5} + {2x}^{2} y \times 8xy + {2x}^{2} y \times {13x}^{2} {y}^{3} [/tex]
[tex] {6x}^{8} {y}^{6} + {16x}^{3} {y}^{2} + {26x}^{4} {y}^{4} [/tex]
2/
[tex] {5a}^{3} {b}^{2} ( {8ab}^{4} + 5a + {6b}^{3} a)[/tex]
[tex] {5a}^{3} {b}^{2} \times 8ab ^{4} + {5a}^{3} {b}^{2} \times 5a + {5a}^{3} {b}^{2} \times {6b}^{3} a[/tex]
[tex] {40a}^{4} {b}^{6} + {25a}^{4} {b}^{2} + {30a}^{4} {b}^{5} [/tex]
[tex](2x - 1)(x + 8) - {2x}^{2} + 8[/tex]
[tex] {2x}^{2} + 16x - x - 8 - {2x}^{2} + 8[/tex]
[tex]( {2x}^{2} - {2x}^{2} )(16x - x)( - 8 + 8))[/tex]
[tex]15x[/tex]
Inciso C ✓
[tex](3x - 4)(x + 6) - {3x}^{2} + 24[/tex]
[tex] {3x}^{2} + 18x - 4x - 24 - {3x}^{2} + 24[/tex]
[tex]( {3x}^{2} - {3x}^{2} )(18x - 4x)( - 24 + 24)[/tex]
[tex]14x[/tex]
Inciso B
espero te sirva saludos
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
hola ✓
taller ✓
1/
[tex] {2x}^{2} y( {3x}^{6} {y}^{5} + 8xy + {13x}^{2} {y}^{3} )[/tex]
[tex] {2x}^{2} y \times {3x}^{6} {y}^{5} + {2x}^{2} y \times 8xy + {2x}^{2} y \times {13x}^{2} {y}^{3} [/tex]
[tex] {6x}^{8} {y}^{6} + {16x}^{3} {y}^{2} + {26x}^{4} {y}^{4} [/tex]
2/
[tex] {5a}^{3} {b}^{2} ( {8ab}^{4} + 5a + {6b}^{3} a)[/tex]
[tex] {5a}^{3} {b}^{2} \times 8ab ^{4} + {5a}^{3} {b}^{2} \times 5a + {5a}^{3} {b}^{2} \times {6b}^{3} a[/tex]
[tex] {40a}^{4} {b}^{6} + {25a}^{4} {b}^{2} + {30a}^{4} {b}^{5} [/tex]
numero 2 ✓
1/
[tex](2x - 1)(x + 8) - {2x}^{2} + 8[/tex]
[tex] {2x}^{2} + 16x - x - 8 - {2x}^{2} + 8[/tex]
[tex]( {2x}^{2} - {2x}^{2} )(16x - x)( - 8 + 8))[/tex]
[tex]15x[/tex]
Inciso C ✓
2/
[tex](3x - 4)(x + 6) - {3x}^{2} + 24[/tex]
[tex] {3x}^{2} + 18x - 4x - 24 - {3x}^{2} + 24[/tex]
[tex]( {3x}^{2} - {3x}^{2} )(18x - 4x)( - 24 + 24)[/tex]
[tex]14x[/tex]
Inciso B
espero te sirva saludos