Explicación paso a paso:
Diferencia de cubos:
a³ - b³ = (a - b)(a² + ab + b²)
Factoriza aplicando la diferencia de cubos :
1)
x³-27
(x)³-(3)³
(x-3) ((x)² + (x)(3) + (3)²)
(x-3) (x²+3x+9)
Por lo tanto:
x³-27 = (x-3) (x²+3x+9)
2)
1-y³
(1)³-(y)³
(1-y) ((1)² + (1)(y) + (y)²)
(1-y) (1+y+y²)
1-y³ = (1-y) (1+y+y²)
3)
125-z³
(5)³-(z)³
(5-z) ((5)² + (5)(z) + (z)²)
(5-z) (25+5z+z²)
125-z³ = (5-z) (25+5z+z²)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
Diferencia de cubos:
a³ - b³ = (a - b)(a² + ab + b²)
Factoriza aplicando la diferencia de cubos :
1)
x³-27
(x)³-(3)³
(x-3) ((x)² + (x)(3) + (3)²)
(x-3) (x²+3x+9)
Por lo tanto:
x³-27 = (x-3) (x²+3x+9)
2)
1-y³
(1)³-(y)³
(1-y) ((1)² + (1)(y) + (y)²)
(1-y) (1+y+y²)
Por lo tanto:
1-y³ = (1-y) (1+y+y²)
3)
125-z³
(5)³-(z)³
(5-z) ((5)² + (5)(z) + (z)²)
(5-z) (25+5z+z²)
Por lo tanto:
125-z³ = (5-z) (25+5z+z²)