El átomo de hidrógeno es el átomo más simple que existe y el único que admite una solución analítica exacta desde el punto de vista de la mecánica cuántica. El átomo de hidrógeno, es conocido también como átomo monoelectrónico, debido a que está formado por un protón que se encuentra en el núcleo del átomo y que contiene más del 99,945 % de la masa del átomo, y un solo electrón -unas 1836 veces menos masivo que el protón- que "orbita" alrededor de dicho núcleo (aunque también pueden existir átomos de hidrógeno con núcleos formados por un protón y 1 o 2 neutrones más, llamados deuterio y tritio, respectivamente).
Se puede hacer una analogía pedagógica del átomo de hidrógeno con un Sistema Solar, donde el sol sería el único Núcleo atómico y que tiene la mayor cantidad de masa -concretamente es el 99,86 % del Sistema Solar- y en su órbita tuviera un solo planeta (Electrón) que conformaría el resto de la masa del Sistema (átomo de protio (1H)). Esto hace del hidrógeno el más simple de todos los elementos de la tabla periódica de los elementos.
Desde principios del siglo XX se conocía que la mecánica clásica no podía explicar ni la estructura interna del átomo, reflejada en la existencia de líneas espectrales, ni la propia existencia y estabilidad de los átomos. De acuerdo con las predicciones de la mecánica clásica y el electromagnetismo clásico un átomo de hidrógeno formado por un protón y un electrón orbitando a su alrededor no sería un sistema estable, ya que de acuerdo con la electrodinámica clásica una carga en movimiento emite radiación electromagnética.
El electrón al orbitar alrededor de centro de masas del sistema, tendría una gran aceleración y emitiría gran cantidad de fotones, perdiendo así energía y velocidad. La teoría clásica pronosticaba que el electrón caería sobre el núcleo atómico, haciendo que cualquier átomo como sistema físico tuviera una duración muy corta antes de que el electrón cayera sobre el núcleo atómico, al haber perdido la energía cinética en forma de radiación.
Este hecho supuso un enigma para los físicos de principios de siglo XX, que en un intento de explicar este y otros problema de la teoría electromagnética acabaron desarrollando una nueva forma de mecánica, que era la única que podía describir los sistemas de escala atómica llamada mecánica cuántica. En este artículo se mostrará la solución cuántica. Históricamente se ha enseñado esta solución porque además de corroborar los datos experimentales con el modelo teórico cuántico de los átomos, proporciona las herramientas fundamentales de la teoría atómica actual, y provee una solución aproximada pero muy buena para los átomos más complicado
Respuesta:
El átomo de hidrógeno es el átomo más simple que existe y el único que admite una solución analítica exacta desde el punto de vista de la mecánica cuántica. El átomo de hidrógeno, es conocido también como átomo monoelectrónico, debido a que está formado por un protón que se encuentra en el núcleo del átomo y que contiene más del 99,945 % de la masa del átomo, y un solo electrón -unas 1836 veces menos masivo que el protón- que "orbita" alrededor de dicho núcleo (aunque también pueden existir átomos de hidrógeno con núcleos formados por un protón y 1 o 2 neutrones más, llamados deuterio y tritio, respectivamente).
Se puede hacer una analogía pedagógica del átomo de hidrógeno con un Sistema Solar, donde el sol sería el único Núcleo atómico y que tiene la mayor cantidad de masa -concretamente es el 99,86 % del Sistema Solar- y en su órbita tuviera un solo planeta (Electrón) que conformaría el resto de la masa del Sistema (átomo de protio (1H)). Esto hace del hidrógeno el más simple de todos los elementos de la tabla periódica de los elementos.
Respuesta:
Desde principios del siglo XX se conocía que la mecánica clásica no podía explicar ni la estructura interna del átomo, reflejada en la existencia de líneas espectrales, ni la propia existencia y estabilidad de los átomos. De acuerdo con las predicciones de la mecánica clásica y el electromagnetismo clásico un átomo de hidrógeno formado por un protón y un electrón orbitando a su alrededor no sería un sistema estable, ya que de acuerdo con la electrodinámica clásica una carga en movimiento emite radiación electromagnética.
El electrón al orbitar alrededor de centro de masas del sistema, tendría una gran aceleración y emitiría gran cantidad de fotones, perdiendo así energía y velocidad. La teoría clásica pronosticaba que el electrón caería sobre el núcleo atómico, haciendo que cualquier átomo como sistema físico tuviera una duración muy corta antes de que el electrón cayera sobre el núcleo atómico, al haber perdido la energía cinética en forma de radiación.
Este hecho supuso un enigma para los físicos de principios de siglo XX, que en un intento de explicar este y otros problema de la teoría electromagnética acabaron desarrollando una nueva forma de mecánica, que era la única que podía describir los sistemas de escala atómica llamada mecánica cuántica. En este artículo se mostrará la solución cuántica. Históricamente se ha enseñado esta solución porque además de corroborar los datos experimentales con el modelo teórico cuántico de los átomos, proporciona las herramientas fundamentales de la teoría atómica actual, y provee una solución aproximada pero muy buena para los átomos más complicado
Explicación: