Respuesta:
Te las dejo resultas enlistadas con los pasos que seguí. Las identidades a usar son:
*Recíprocas:
[tex]Tan(\o)=\frac{Sen(\o)}{Cos(\o)} \\\\Cot(\o)=\frac{Cos(\o)}{Sen(\o)} \\\\Sec(\o)=\frac{1}{Cos(\o)} \\\\Csc(\o)=\frac{1}{Sen(\o)}[/tex]
*Co-funciones:
[tex]Cos(\o)=Sen(\frac{\pi }{2}- \o)[/tex]
*Pitagórica:
[tex]Sen^2(\o)+Cos^2(\o)=1[/tex]
Los ejercicios son los siguientes:
1)
[tex]Cot(\o)Tan(\o)\\\\\frac{Cos(\o)}{Sen(\o)} \frac{Sen(\o)}{Cos(\o)} \\\\1[/tex]
2)
[tex]Cot^2(\o)\\\\(\frac{Cos(\o)}{Sen(\o)})^2\\\\ \frac{Sen^2(\frac{\pi }{2}-\o )}{Sen^2(\o)}[/tex]
3)
[tex]Cot(\o)Sec(\o)\\\\\frac{Cos(\o)}{Sen(\o)} \frac{1}{Cos(\o)} \\\\\frac{1}{Sen(\o)}[/tex]
4)
[tex]2+Tan(\o)+5Cos(\o)\\\\2+\frac{Sen(\o)}{Cos(\o)}+5Cos(\o)\\\\2+\frac{Sen(\o)}{Sen(\frac{\pi }{2}-\o )} +5Sen(\frac{\pi}{2}-\o )[/tex]
5)
[tex]5Tan^2(\o)-2Sec^2(\o)\\\\5(\frac{Sen(\o)}{Cos(\o)} )^2-2(\frac{1}{Cos(\o)} )^2\\\\\frac{5Sen^2(\o)-2}{Cos^2(\o)} \\\\\frac{5Sen^2(\o)-2}{1-Sen^2(\o)}[/tex]
6)
[tex]3Cos(\o)+6Tan(\o)\\\\3Cos(\o)+6\frac{Sen(\o)}{Cos(\o)} \\\\\frac{3Cos^2(\o)+6Sen(\o)}{Cos(\o)} \\\\\frac{3-3Sen^2(\o)+6Sen(\o)}{Sen(\frac{\pi }{2} -\o)}[/tex]
7)
[tex]3+Tan(\o)-3Csc(\o)\\\\3+\frac{Sen(\o)}{Cos(\o)}-3\frac{1}{Sen(\o)}\\\\\frac{3Sen(\o)Cos(\o)+Sen^2(\o)-3Cos(\o)}{Sen(\o)Cos(\o)} \\\\\frac{(3/2)Sen(2\o)+Sen^2(\o)-3Sen(\frac{\pi }{2}-\o )}{(1/2)Sen(2\o)} \\\\\frac{3Sen(2\o)+2Sen^2(\o)-6Sen(\frac{\pi }{2}-\o )}{Sen(2\o)}[/tex]
8)
[tex]\frac{2}{Csc^2(\o)} -2Tan^2(\o)\\\\2Sen^2(\o)-2\frac{Sen^2(\o)}{Cos^2(\o)} \\\\\frac{2Sen^2(\o)Cos^2(\o)-2Sen^2(\o)}{Cos^2(\o)} \\\\\frac{(1/2)Sen^2(2\o)-2Sen^2(\o)}{1-Sen^2(\o)} \\\\\frac{Sen^2(2\o)-4Sen^2(\o)}{2-2Sen^2(\o)}[/tex]
¡Espero haberte ayudado, Saludos y éxito!
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
Te las dejo resultas enlistadas con los pasos que seguí. Las identidades a usar son:
*Recíprocas:
[tex]Tan(\o)=\frac{Sen(\o)}{Cos(\o)} \\\\Cot(\o)=\frac{Cos(\o)}{Sen(\o)} \\\\Sec(\o)=\frac{1}{Cos(\o)} \\\\Csc(\o)=\frac{1}{Sen(\o)}[/tex]
*Co-funciones:
[tex]Cos(\o)=Sen(\frac{\pi }{2}- \o)[/tex]
*Pitagórica:
[tex]Sen^2(\o)+Cos^2(\o)=1[/tex]
Los ejercicios son los siguientes:
1)
[tex]Cot(\o)Tan(\o)\\\\\frac{Cos(\o)}{Sen(\o)} \frac{Sen(\o)}{Cos(\o)} \\\\1[/tex]
2)
[tex]Cot^2(\o)\\\\(\frac{Cos(\o)}{Sen(\o)})^2\\\\ \frac{Sen^2(\frac{\pi }{2}-\o )}{Sen^2(\o)}[/tex]
3)
[tex]Cot(\o)Sec(\o)\\\\\frac{Cos(\o)}{Sen(\o)} \frac{1}{Cos(\o)} \\\\\frac{1}{Sen(\o)}[/tex]
4)
[tex]2+Tan(\o)+5Cos(\o)\\\\2+\frac{Sen(\o)}{Cos(\o)}+5Cos(\o)\\\\2+\frac{Sen(\o)}{Sen(\frac{\pi }{2}-\o )} +5Sen(\frac{\pi}{2}-\o )[/tex]
5)
[tex]5Tan^2(\o)-2Sec^2(\o)\\\\5(\frac{Sen(\o)}{Cos(\o)} )^2-2(\frac{1}{Cos(\o)} )^2\\\\\frac{5Sen^2(\o)-2}{Cos^2(\o)} \\\\\frac{5Sen^2(\o)-2}{1-Sen^2(\o)}[/tex]
6)
[tex]3Cos(\o)+6Tan(\o)\\\\3Cos(\o)+6\frac{Sen(\o)}{Cos(\o)} \\\\\frac{3Cos^2(\o)+6Sen(\o)}{Cos(\o)} \\\\\frac{3-3Sen^2(\o)+6Sen(\o)}{Sen(\frac{\pi }{2} -\o)}[/tex]
7)
[tex]3+Tan(\o)-3Csc(\o)\\\\3+\frac{Sen(\o)}{Cos(\o)}-3\frac{1}{Sen(\o)}\\\\\frac{3Sen(\o)Cos(\o)+Sen^2(\o)-3Cos(\o)}{Sen(\o)Cos(\o)} \\\\\frac{(3/2)Sen(2\o)+Sen^2(\o)-3Sen(\frac{\pi }{2}-\o )}{(1/2)Sen(2\o)} \\\\\frac{3Sen(2\o)+2Sen^2(\o)-6Sen(\frac{\pi }{2}-\o )}{Sen(2\o)}[/tex]
8)
[tex]\frac{2}{Csc^2(\o)} -2Tan^2(\o)\\\\2Sen^2(\o)-2\frac{Sen^2(\o)}{Cos^2(\o)} \\\\\frac{2Sen^2(\o)Cos^2(\o)-2Sen^2(\o)}{Cos^2(\o)} \\\\\frac{(1/2)Sen^2(2\o)-2Sen^2(\o)}{1-Sen^2(\o)} \\\\\frac{Sen^2(2\o)-4Sen^2(\o)}{2-2Sen^2(\o)}[/tex]
¡Espero haberte ayudado, Saludos y éxito!