Resolución
Aplicamos ecuaciones cuadráticas
[tex]\begin{bmatrix}x+z+y=2541\\ z=x+1\\ y=z+1\end{bmatrix}[/tex]
Sustituimos "y"
[tex]\mathrm{Sustituir\:}y=z+1[/tex]
[tex]\begin{bmatrix}z=x+1\\ x+z+z+1=2541\end{bmatrix}[/tex]
[tex]x+z+z+1=2541[/tex]
[tex]x+2z+1=2541[/tex]
Sustituimos "z"
[tex]\mathrm{Sustituir\:}z=x+1[/tex]
[tex]\begin{bmatrix}x+2\left(x+1\right)+1=2541\end{bmatrix}[/tex]
[tex]\begin{bmatrix}3x+3=2541\end{bmatrix}[/tex]
Despejamos "x"
[tex]3x+3=2541[/tex]
[tex]3x+3-3=2541-3[/tex]
[tex]3x=2538[/tex]
[tex]x=\frac{2538}{3}[/tex]
[tex]x=846[/tex]
Despejamos "z"
[tex]\mathrm{Para\:}z=x+1[/tex]
[tex]z=846+1[/tex]
[tex]z=847[/tex]
Despejamos "y"
[tex]\mathrm{Para\:}y=z+1[/tex]
[tex]y=847+1[/tex]
[tex]y=848[/tex]
Entonces
[tex]x=846\\\:y=848\\z=847[/tex]
Comprobamos
[tex]x+z+y=2541[/tex]
[tex]846+847+848=2541[/tex]
Correcto ✔
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Resolución
Aplicamos ecuaciones cuadráticas
[tex]\begin{bmatrix}x+z+y=2541\\ z=x+1\\ y=z+1\end{bmatrix}[/tex]
Sustituimos "y"
[tex]\mathrm{Sustituir\:}y=z+1[/tex]
[tex]\begin{bmatrix}z=x+1\\ x+z+z+1=2541\end{bmatrix}[/tex]
[tex]x+z+z+1=2541[/tex]
[tex]x+2z+1=2541[/tex]
Sustituimos "z"
[tex]\mathrm{Sustituir\:}z=x+1[/tex]
[tex]\begin{bmatrix}x+2\left(x+1\right)+1=2541\end{bmatrix}[/tex]
[tex]\begin{bmatrix}3x+3=2541\end{bmatrix}[/tex]
Despejamos "x"
[tex]3x+3=2541[/tex]
[tex]3x+3-3=2541-3[/tex]
[tex]3x=2538[/tex]
[tex]x=\frac{2538}{3}[/tex]
[tex]x=846[/tex]
Despejamos "z"
[tex]\mathrm{Para\:}z=x+1[/tex]
[tex]z=846+1[/tex]
[tex]z=847[/tex]
Despejamos "y"
[tex]\mathrm{Para\:}y=z+1[/tex]
[tex]y=847+1[/tex]
[tex]y=848[/tex]
Entonces
[tex]x=846\\\:y=848\\z=847[/tex]
Comprobamos
[tex]x+z+y=2541[/tex]
[tex]846+847+848=2541[/tex]
Correcto ✔
RPTA = El numero mayor es 848