【Rpta.】La pendiente del segmento que forma "A" y "B" es -1. Alternativa d)
[tex]\green{{\hspace{50 pt}\above 1.2pt}\boldsymbol{\mathsf{Procedimiento}}{\hspace{50pt}\above 1.2pt}}[/tex]
Recordemos que, la pendiente(m) dos puntos A(x1,y1) y B(x2,y2) se define como:
[tex]\boxed{\boldsymbol{\mathsf{m = \dfrac{y_2-y_1}{x_2-x_1}}}}[/tex]
Del problema tenemos que:
[tex]\star \:\:\mathsf{A=(\underbrace{1}_{\boldsymbol{\mathsf{x_1}}},\overbrace{-1}^{\boldsymbol{\mathsf{y_1}}})}[/tex] [tex]\star \:\: \mathsf{B =(\underbrace{-8}_{\boldsymbol{\mathsf{x_2}}},\overbrace{8}^{\boldsymbol{\mathsf{y_2}}})}[/tex]
Entonces la pendiente de los puntos "A" y "B" es:
[tex]\begin{array}{c}\mathsf{m=\dfrac{y_2-y_1}{x_2-x_1}}\\\\\\\mathsf{m=\dfrac{8-(-1)}{-8-(1)}}\\\\\\\mathsf{m=\dfrac{8+1}{-8-1}}\\\\\\\mathsf{m=\dfrac{9}{-9}}\\\\\\\mathsf{\boxed{\boxed{\boldsymbol{\mathsf{m=-1}}}}}\end{array}[/tex]
[tex]\boxed{\sf{{R}}\quad\raisebox{10pt}{$\sf{\red{O}}$}\!\!\!\!\raisebox{-10pt}{$\sf{\red{O}}$}\quad\raisebox{15pt}{$\sf{{G}}$}\!\!\!\!\raisebox{-15pt}{$\sf{{G}}$}\quad\raisebox{15pt}{$\sf{\red{H}}$}\!\!\!\!\raisebox{-15pt}{$\sf{\red{H}}$}\quad\raisebox{10pt}{$\sf{{E}}$}\!\!\!\!\raisebox{-10pt}{$\sf{{E}}$}\quad\sf{\red{R}}}\hspace{-64.5pt}\rule{10pt}{.2ex}\:\rule{3pt}{1ex}\rule{3pt}{1.5ex}\rule{3pt}{2ex}\rule{3pt}{1.5ex}\rule{3pt}{1ex}\:\rule{10pt}{.2ex}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
【Rpta.】La pendiente del segmento que forma "A" y "B" es -1. Alternativa d)
[tex]\green{{\hspace{50 pt}\above 1.2pt}\boldsymbol{\mathsf{Procedimiento}}{\hspace{50pt}\above 1.2pt}}[/tex]
Recordemos que, la pendiente(m) dos puntos A(x1,y1) y B(x2,y2) se define como:
[tex]\boxed{\boldsymbol{\mathsf{m = \dfrac{y_2-y_1}{x_2-x_1}}}}[/tex]
Del problema tenemos que:
[tex]\star \:\:\mathsf{A=(\underbrace{1}_{\boldsymbol{\mathsf{x_1}}},\overbrace{-1}^{\boldsymbol{\mathsf{y_1}}})}[/tex] [tex]\star \:\: \mathsf{B =(\underbrace{-8}_{\boldsymbol{\mathsf{x_2}}},\overbrace{8}^{\boldsymbol{\mathsf{y_2}}})}[/tex]
Entonces la pendiente de los puntos "A" y "B" es:
[tex]\begin{array}{c}\mathsf{m=\dfrac{y_2-y_1}{x_2-x_1}}\\\\\\\mathsf{m=\dfrac{8-(-1)}{-8-(1)}}\\\\\\\mathsf{m=\dfrac{8+1}{-8-1}}\\\\\\\mathsf{m=\dfrac{9}{-9}}\\\\\\\mathsf{\boxed{\boxed{\boldsymbol{\mathsf{m=-1}}}}}\end{array}[/tex]
[tex]\boxed{\sf{{R}}\quad\raisebox{10pt}{$\sf{\red{O}}$}\!\!\!\!\raisebox{-10pt}{$\sf{\red{O}}$}\quad\raisebox{15pt}{$\sf{{G}}$}\!\!\!\!\raisebox{-15pt}{$\sf{{G}}$}\quad\raisebox{15pt}{$\sf{\red{H}}$}\!\!\!\!\raisebox{-15pt}{$\sf{\red{H}}$}\quad\raisebox{10pt}{$\sf{{E}}$}\!\!\!\!\raisebox{-10pt}{$\sf{{E}}$}\quad\sf{\red{R}}}\hspace{-64.5pt}\rule{10pt}{.2ex}\:\rule{3pt}{1ex}\rule{3pt}{1.5ex}\rule{3pt}{2ex}\rule{3pt}{1.5ex}\rule{3pt}{1ex}\:\rule{10pt}{.2ex}[/tex]