Piden:
[tex] {(\frac{\sqrt{a + b} \times c}{d})}^{2}[/tex]
Reemplazamos:
[tex] {(\frac{ \sqrt{3 - \frac{3}{4}}\times\frac{2}{7} }{ - \frac{5}{14} })}^{2} = {( \frac{ \sqrt{ \frac{9}{4} } \times \frac{2}{7} }{ - \frac{5}{14} })}^{2} = {( \frac{ \frac{3}{2} \times \frac{2}{7} }{ - \frac{5}{14} })}^{2} [/tex]
Luego:
[tex]{( \frac{ \frac{6}{14} }{ - \frac{5}{14} })}^{2} = {( - \frac{6}{5})}^{2} = \frac{36}{25} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Piden:
[tex] {(\frac{\sqrt{a + b} \times c}{d})}^{2}[/tex]
Reemplazamos:
[tex] {(\frac{ \sqrt{3 - \frac{3}{4}}\times\frac{2}{7} }{ - \frac{5}{14} })}^{2} = {( \frac{ \sqrt{ \frac{9}{4} } \times \frac{2}{7} }{ - \frac{5}{14} })}^{2} = {( \frac{ \frac{3}{2} \times \frac{2}{7} }{ - \frac{5}{14} })}^{2} [/tex]
Luego:
[tex]{( \frac{ \frac{6}{14} }{ - \frac{5}{14} })}^{2} = {( - \frac{6}{5})}^{2} = \frac{36}{25} [/tex]