Respuesta:
Una caja con forma de prisma recto tiene un volumen representado por una ecuación. Considerando el área de la base.
A) El dibujo que representa la situación se puede ver en la imagen.
B) La Expresión algebraica que representa la altura de la caja es:
altura = y - 1
Explicación paso a paso:
Datos;
Volumen: y³-y²+4y-4
Área base: y²+4
El volumen de un prisma es la multiplicación sus longitudes (largo, ancho y altura).
V = a·b·h = A_b·h
Siendo;
a: largo
b: ancho
h: altura
El área de base forma un rectángulo, la cual es el producto de la largo por el ancho.
A_b = a·b
y²+4 = a·b
Sustituir A_b en V;
y³-y²+4y-4 = (y²+4)·h
Despejar h;
h = (y³-y²+4y-4)/(y²+4)
Aplicar división de polinomios;
Dividir los factores de mayor grado del numerador y del denominador;
y³/y² = y
Multiplicar y por y²+4;
y³+4y
Restar y³+4y a y³-y²+4y-4;
-y²-4
= y + (-y²-4)/(y²+4)
-y²/y² = -1
Multiplicar -1 por y²+4;
Restar -y²-4 a -y²-4;
0
= y-1
h = y - 1
de nada
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
Una caja con forma de prisma recto tiene un volumen representado por una ecuación. Considerando el área de la base.
A) El dibujo que representa la situación se puede ver en la imagen.
B) La Expresión algebraica que representa la altura de la caja es:
altura = y - 1
Explicación paso a paso:
Datos;
Volumen: y³-y²+4y-4
Área base: y²+4
El volumen de un prisma es la multiplicación sus longitudes (largo, ancho y altura).
V = a·b·h = A_b·h
Siendo;
a: largo
b: ancho
h: altura
El área de base forma un rectángulo, la cual es el producto de la largo por el ancho.
A_b = a·b
y²+4 = a·b
Sustituir A_b en V;
y³-y²+4y-4 = (y²+4)·h
Despejar h;
h = (y³-y²+4y-4)/(y²+4)
Aplicar división de polinomios;
Dividir los factores de mayor grado del numerador y del denominador;
y³/y² = y
Multiplicar y por y²+4;
y³+4y
Restar y³+4y a y³-y²+4y-4;
-y²-4
= y + (-y²-4)/(y²+4)
Dividir los factores de mayor grado del numerador y del denominador;
-y²/y² = -1
Multiplicar -1 por y²+4;
-y²-4
Restar -y²-4 a -y²-4;
0
= y-1
h = y - 1
de nada