¡Notificar abuso!En un corral hay conejos y gallinas ; en total ,25 cabezas y 80 patas . cuantos conejos y gallinas hay?
Lo que hay de conejos es = s Lo que hay de gallinas es = t
Del enunciado tenemos que: s + t = 25 4s + 2t = 80
Despejo s en la primera ecuación s + t = 25 s = 25 - t El despeje de s lo sustituyo en la segunda ecuación 4s + 2t = 80 4 (25 - t) + 2t = 80 100 - 4t + 2t = 80 100 - 2t = 80 - 2t = 80 - 100 - 2t = - 20 t = - 20/-2 t = 10 El valor de t lo sustituyo en el despeje de s s = 25 - t s = 25 - 10 s = 15
x+y=25 ya que cada uno tiene solo 1 cabeza
4x+2y=80 ya que el conejo tiene 4 patas y la gallina 2 y ya resolvemos el sistema
x=25-y 4(25-y)+2y=80 100-4y+2y=80 -2y=-20 -> y= 10 gallinas
x=25-10 x= 15 conejos
Lo que hay de conejos es = s
Lo que hay de gallinas es = t
Del enunciado tenemos que:
s + t = 25
4s + 2t = 80
Despejo s en la primera ecuación
s + t = 25
s = 25 - t
El despeje de s lo sustituyo en la segunda ecuación
4s + 2t = 80
4 (25 - t) + 2t = 80
100 - 4t + 2t = 80
100 - 2t = 80
- 2t = 80 - 100
- 2t = - 20
t = - 20/-2
t = 10
El valor de t lo sustituyo en el despeje de s
s = 25 - t
s = 25 - 10
s = 15
Respuesta.
Hay 10 gallinas 15 conejos