Elektron wlatuje z pewną prędkością początkową vo do kondensatora płaskiego równolegle do jego płytek i w równej odległości od każdej z nich. Do płytek kondensatora przyłożona jest różnica potencjałów U = 300 V. Odległość między płytkami d = 2 cm, a długość kondensatora S = 10 cm. Jaką graniczną prędkość początkową vo powinien mieć elektron, aby nie opuścił kondensatora?
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Elektron będzie po działaniem siły, która nada mu przyspieszenie
w kierunku płytki dodatniej
t=s/vo
oznaczmy vo=vy
vy prostopadłe do vx
vy=s/t
s1=d/2 droga elektronu w osi y
Różnica potencjałów działająca na elektron
ΔU=U/2= 300/2=150
Prędkość vx elektronu
eU=mv^2/2
vx=(2eU/m)^0,5
masa elektronu m=9,1*10^-31 kg
ładunek elektronu e=1,6*10^-19 C
vx= (2*1,6*10^-19*150/9,1*10^-31)^0,5=7,2627*10^6 m/s
s1=1 cm= 0,01 m
czas tx
prędkość w ruchu przyspieszonym
2as=v^2 z v^2-vo^2=2as
at=v z v=vo+at
2s/t=v
t=2*0,01/7,2627*10^6=0,0028 *10^-6=2,8*10^-9
Warunek dla vo
s=10 cm=0,1 m
vy=vo>s/t= 0,1/2,8*10^-9=3,5714*10^7 m/s
vo> 3,5714*10^7 m/s