El teorema de pitacoras,antecedenteshistoricas,demostracion,academicay conclusion y usos porfavor respondanme rapido es para mañana a las 6.00 am doy 20 puntos
linaparra
Resumen Las deducciones que a lo largo de la historia se han realizado en torno al Teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del Teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del Teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Algebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría. Palabras clave: Magnitud, Longitud, Área, Producto Notable, Teorema de Pitágoras. Introducción El desarrollo de los procesos cognitivos en el campo de la Didáctica de la Matemática es capaz de ayudar a nuestros estudiantes en la resolución de problemas de geometría, los cuales se deben realizar coordinando la caracterización propuesta por Duval (1998) y desarrollados por Torregrosa, G. y Quesada, H (2007) en la ultima referencia, en donde el proceso cognitivo de visualización está íntimamente relacionado con la forma geométrica de la figura, es decir, su configuración y el razonamiento se basa en aplicar las afirmaciones matemáticas que les corresponda algebraicamente. La coordinación de estos procesos cognitivos les permitirá construir una teoría para deducir el Teorema de Pitágoras desde una acepción geométrica, tomando en consideración los cuadrados que se coloquen sobre los lados de un triángulo rectángulo cualquiera, tomando en consideración la idea de área, esto es, si son las áreas de los cuadrados construidos sobre las longitudes de los catetos del triángulo rectángulo y es el área del cuadrado construido sobre la longitud de la hipotenusa, entonces se debe cumplir