Respuesta:
[tex]2\sqrt{709} -30[/tex]
Explicación paso a paso:
[tex]x :[/tex] El mayor número.
[tex]y :[/tex] El menor número.
El producto: [tex]2632[/tex]
[tex]Ecuaciones:[/tex]
[tex](x-6) (y) = 2632 -696[/tex]
[tex]x-y=66[/tex]
Por el método de Sustitución:
[tex]xy-6y=1936[/tex] [tex]ecuac.1[/tex]
[tex]x-y = 66[/tex] [tex]ecuac.2[/tex]
Despejamos " x " en la ecuac.2
[tex]x = 66+y[/tex]
Sustituimos " x " en la ecuac.1
[tex]xy-6y = 1936[/tex]
[tex](66+y)y -6y= 1936[/tex]
[tex]66y + y^{2} -6y=1936[/tex]
[tex]y^{2} +60y-1936=0[/tex]
[tex]Aplicando-la-formula-general.[/tex]
[tex]a = 1; b = 60; c=1936[/tex]
[tex]y = \frac{-b\frac{+}{}\sqrt{b^{2} -4ac} }{2a} =\frac{-60\frac{+}{} \sqrt{(60)^{2} -4(1)(-1936)} }{2(1)} =\frac{-60\frac{+}{}\sqrt{3600+7744} }{2} =\frac{-60\frac{+}{}\sqrt{11344} }{2}[/tex]
[tex]y = \frac{-60\frac{+}{} 4\sqrt{709} }{2}[/tex]
[tex]y = \frac{-60+4\sqrt{709} }{2} = -30+2\sqrt{709}[/tex]
[tex]x = 66-30+2\sqrt{709} = 36+2\sqrt{709}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]2\sqrt{709} -30[/tex]
Explicación paso a paso:
[tex]x :[/tex] El mayor número.
[tex]y :[/tex] El menor número.
El producto: [tex]2632[/tex]
[tex]Ecuaciones:[/tex]
[tex](x-6) (y) = 2632 -696[/tex]
[tex]x-y=66[/tex]
Por el método de Sustitución:
[tex]xy-6y=1936[/tex] [tex]ecuac.1[/tex]
[tex]x-y = 66[/tex] [tex]ecuac.2[/tex]
Despejamos " x " en la ecuac.2
[tex]x = 66+y[/tex]
Sustituimos " x " en la ecuac.1
[tex]xy-6y = 1936[/tex]
[tex](66+y)y -6y= 1936[/tex]
[tex]66y + y^{2} -6y=1936[/tex]
[tex]y^{2} +60y-1936=0[/tex]
[tex]Aplicando-la-formula-general.[/tex]
[tex]a = 1; b = 60; c=1936[/tex]
[tex]y = \frac{-b\frac{+}{}\sqrt{b^{2} -4ac} }{2a} =\frac{-60\frac{+}{} \sqrt{(60)^{2} -4(1)(-1936)} }{2(1)} =\frac{-60\frac{+}{}\sqrt{3600+7744} }{2} =\frac{-60\frac{+}{}\sqrt{11344} }{2}[/tex]
[tex]y = \frac{-60\frac{+}{} 4\sqrt{709} }{2}[/tex]
[tex]y = \frac{-60+4\sqrt{709} }{2} = -30+2\sqrt{709}[/tex]
[tex]x = 66-30+2\sqrt{709} = 36+2\sqrt{709}[/tex]