Respuesta:
4. d) 0.6
5. b) 2
6. b) 198
Explicación paso a paso:
4.
Del Gráfico:
DC = BC = 2 + 3 = 5
tg θ = EC / DC = 3 / 5 = 6 / 10
tg θ = 0.6
5.
Los ángulos A y B son ángulos complementarios:
Sen B = Cos A
E = Sen²A + Sen²B + 1
E = Sen²A + Cos²A + 1
Utilizar Identidad trigonométrica:
Sen²A + Cos²A = 1
E = 1 + 1
E = 2
6.
x⁵ = 3 + √8
y⁵ = 3 - √8
F = x¹⁵ + y¹⁵ + 3(x⁵ + y⁵)(x⁵y⁵ - 1)
F = (x⁵)³ + (y⁵)³ + 3x⁵y⁵(x⁵ + y⁵) - 3(x⁵ + y⁵)
Utilizar: (a + b)³ = a³ + b³ + 3ab(a + b)
F = (x⁵ + y⁵)³ - 3(x⁵ + y⁵)
F = (x⁵ + y⁵)((x⁵ + y⁵)² - 3)
F = (3 + √8 + 3 - √8)((3 + √8 + 3 - √8)² - 3)
F = (6)(6² - 3)
F = 6(36 - 3)
F = 6(33)
F = 198
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
4. d) 0.6
5. b) 2
6. b) 198
Explicación paso a paso:
4.
Del Gráfico:
DC = BC = 2 + 3 = 5
tg θ = EC / DC = 3 / 5 = 6 / 10
tg θ = 0.6
5.
Los ángulos A y B son ángulos complementarios:
Sen B = Cos A
E = Sen²A + Sen²B + 1
E = Sen²A + Cos²A + 1
Utilizar Identidad trigonométrica:
Sen²A + Cos²A = 1
E = 1 + 1
E = 2
6.
x⁵ = 3 + √8
y⁵ = 3 - √8
F = x¹⁵ + y¹⁵ + 3(x⁵ + y⁵)(x⁵y⁵ - 1)
F = (x⁵)³ + (y⁵)³ + 3x⁵y⁵(x⁵ + y⁵) - 3(x⁵ + y⁵)
Utilizar: (a + b)³ = a³ + b³ + 3ab(a + b)
F = (x⁵ + y⁵)³ - 3(x⁵ + y⁵)
F = (x⁵ + y⁵)((x⁵ + y⁵)² - 3)
F = (3 + √8 + 3 - √8)((3 + √8 + 3 - √8)² - 3)
F = (6)(6² - 3)
F = 6(36 - 3)
F = 6(33)
F = 198